Monitoring Flow at the Sacramento Deep Water Ship Channel

Shawn Mayr DWR - Central District February 28, 2006

Acknowledgments

Clients: DWR-Division of Environmental Services, Maureen McGee, and Roger Churchwell

Field Operators: DWR-Central District, Dave Huston, Karen Lam Fat Chong Him, John Ho, Dave Schaap, Leiji Liu

Data Scientists: DWR-Central District, Dave Huston, and Karen Lam Fat Chong Him

Two Talks

Part 1: Ship Channel Flow Investigation

Part 2: Current Events in DWR Flow Monitoring

- New Monitoring Stations
- Increased Accuracy
- Increased Safety

Improved Telemetry and Data Storage

Purpose: A fish migration study needed flow monitoring at the Sacramento Deep Water Ship Channel.

- Two flow estimation approaches were evaluated.
 - Velocity Index Method (Acoustic Doppler)
 Orifice + Vertical Slot Equations (Acoustic Doppler Calibration)

Study Purpose – Fish Migration

Head of the Sacramento Deep Water Ship Channel

Port of Sacramento Deep Water Ship Channel

William G. Stone Ship Locks

12.52 騙 Unintended Flowcle Otheration Monitoring Location 2 3 - Ship Channel Sacramento River • Large Ship Bay - 640' x 86' Decommissioned in mid 1980's and de-authorized in 2000

- Reactivated for fish passage study in 2003 and 2004
- Currently non-operational

2. Downstream Side of Sacramento Gates + Unintended Flow Paths

2. Center Gap in the Sacramento River Gate @ High Flow

Delta H = 5 ft (January 2006)

Head Difference Approach > Orifice Equation (Eq. 1) $Q = AK\sqrt{2g\Delta h}$ > Simplified to $Q = AK\sqrt{\Delta h}$ where, $A = area = 1' \times stage$ K = 2.5 (from boat measured flow) $\Delta h =$ head difference $> \Delta h = Sacramento River Elevation - Ship$ **Channel Elevation**

Translation of Known Elevation Data

Water Surface Elevation Translation

Stage data for Eq. 1 required
 General linear regression equation used:
 y = 1.22x - 2.2
 where,

y = stage at boat lock
x = stage at RVB
2.2 = empirical number created to make the stage a the boat lock and
IST equivalent at zero flow

Fish Ladder Flow Equation \succ Vertical Slot Equation (Eq. 2¹) $Q = \alpha (y_0 / b_0) - \gamma,$ where, $\alpha \& \gamma = 3.77 \& -20$ y_0 = water depth $b_0 =$ slot width = 1 foot

1 - Rajaratnam N, Katopodis C & Solanki S (1992) New designs of vertical slot fishways. CanadianJournal of Civil Engineering 19(3): 402-414.

Predictions of Measured Flow: water elevation based

Prediction of Measured Flow

Gate Operation Events & 2003 - 2004 Flow Data

Part 1 Conclusions

Velocity Index Method was not judged appropriate for the velocities observed during the period of record.

Water Surface Difference Method provided a reasonable fit of observed data.

Recommendation: Future studies should include a stage monitoring at the Port of Sacramento.

Intermission

Current Events in DWR Flow Monitoring

Expanding Flow Monitoring Network

Data Base and Telemetry

Data Base and Processing – Hydstra

- Specialized database for hydraulic and hydrologic data.
- Improved storage, processing, and deliver of data.

> Telemetry

- From GOES Satellite to Cell Modems.
- Allows higher bandwidth and two way communications.
- Lower cost maintenance and decreased downtime.

