MODFLOW-OWHM
Hydrologic Budgets and Case Studies

PRESENTED BY JON TRAUM, P.E.
Outline

- SGMA overview
- Types of hydrologic budgets generated by MF-OHWM
- Examples from case studies scattered within
 - CVHM (Claudia Faunt)
 - SJJRPGW (Jon Traum)
 - MERSTAN (Steve Philips)
 - SBFTM (Scott Paulinski)
 - PVHM (Randy Hanson)
 - Example Problems (Scott Boyce)
SGMA Undesirable Results

- Lowering of groundwater levels
- Reduction of groundwater storage
- Degraded water quality
- Seawater intrusion
- Land subsidence
- Depletions of interconnected surface water
Hydrologic Budgets

- SGMA definition of hydrologic budget
 - Total groundwater and surface water entering and leaving a basin
- MF-OWHM Budgets
 - Groundwater budget
 - Water use budget
 - Streamflow budget
 - MNW2 budget
 - UZF budget
Pre-development

Natural ➔ Engineered
Simple ➔ Complex
2 million acre-feet/year recharge/discharge ➔ 12 million acre-feet/year recharge/discharge

1962-2003/Engineered

Central Valley Aquifer

Precipitation (12.4) ➔ Evapotranspiration (12.6)

Central Valley Surface Processes

Precipitation (15.8) ➔ Evapotranspiration (25.6)

Surface Water Gain (0.3) [sw out]
Surface Water Loss (0.5) [sw in]

Surface Water Recharge from Irrigation and Precipitation (7.8)

Ground Water Pumpage (9.3)

Ground-water Recharge from Ground-water System (2.2)

Agricultural (8.6)
Municipal (1.1)
Flow through Boreholes (0.4)
Change in Storage (including Subsidence) (1.4)

Surface Water System

Surface Water Gain from Ground-water System (2.2)
Surface Water Flow to Delta (0.1)

Surface Water Deliveries (10.2)
Runoff (1.1)

Indicates loss of storage in aquifer system

OUTFLOW to DELTA (27.2)
Processing Budgets

- Many different ways to temporally or spatially aggregate budget
 - Available for every model time step
 - Available at detailed spatial scales (GW Budget by cell, SW Budget by stream reach)
 - Some stored in binary format

- Tools to help
 - Zone Budget: subregional aggregation
 - ModelMuse: visualization
 - GW_Chart: convert to text
Groundwater Budget

- Used to determine reduction of groundwater storage
- Provides the flows into and out of each model cell in binary format
- Also called cell-by-cell budget
<table>
<thead>
<tr>
<th>Water-balance subregion</th>
<th>Area (square miles)</th>
<th>Net storage from specific yield and compressibility of water</th>
<th>Net elastic and inelastic storage</th>
<th>Net stream leakage</th>
<th>Net pumpage</th>
<th>Net recharge from landscape</th>
<th>Precipitation</th>
<th>Evapotranspiration</th>
<th>Surface-water deliveries</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
<td>611</td>
<td>36,000</td>
<td>13,000</td>
<td>-144,000</td>
<td>45,000</td>
<td>453,000</td>
<td>1,063,000</td>
<td>547,000</td>
<td>46,000</td>
</tr>
<tr>
<td>2</td>
<td>1,163</td>
<td>-17,000</td>
<td>23,000</td>
<td>-294,000</td>
<td>557,000</td>
<td>768,000</td>
<td>1,496,000</td>
<td>1,269,000</td>
<td>129,000</td>
</tr>
<tr>
<td>3</td>
<td>1,112</td>
<td>-39,000</td>
<td>3,000</td>
<td>-212,000</td>
<td>49,000</td>
<td>508,000</td>
<td>1,125,000</td>
<td>1,300,000</td>
<td>717,000</td>
</tr>
<tr>
<td>4</td>
<td>560</td>
<td>-34,000</td>
<td>0</td>
<td>-494,000</td>
<td>6,000</td>
<td>-19,000</td>
<td>562,000</td>
<td>635,000</td>
<td>78,000</td>
</tr>
<tr>
<td>5</td>
<td>957</td>
<td>-34,000</td>
<td>-1,000</td>
<td>-200,000</td>
<td>65,000</td>
<td>466,000</td>
<td>1,200,000</td>
<td>1,101,000</td>
<td>439,000</td>
</tr>
<tr>
<td>6</td>
<td>1,044</td>
<td>-47,000</td>
<td>10,000</td>
<td>34,000</td>
<td>506,000</td>
<td>522,000</td>
<td>1,137,000</td>
<td>1,315,000</td>
<td>329,000</td>
</tr>
<tr>
<td>7</td>
<td>534</td>
<td>2,000</td>
<td>4,000</td>
<td>-38,000</td>
<td>186,000</td>
<td>222,000</td>
<td>590,000</td>
<td>512,000</td>
<td>172,000</td>
</tr>
<tr>
<td>Sacramento Valley</td>
<td>5,981</td>
<td>-99,000</td>
<td>52,000</td>
<td>1,348,000</td>
<td>1,414,000</td>
<td>2,920,000</td>
<td>7,173,000</td>
<td>6,679,000</td>
<td>1,910,000</td>
</tr>
<tr>
<td>Eastside Streams (8)</td>
<td>1,362</td>
<td>-26,000</td>
<td>7,000</td>
<td>95,000</td>
<td>850,000</td>
<td>721,000</td>
<td>1,365,000</td>
<td>1,444,000</td>
<td>205,000</td>
</tr>
<tr>
<td>Delta (9)</td>
<td>1,026</td>
<td>-218,000</td>
<td>3,000</td>
<td>705,000</td>
<td>467,000</td>
<td>-200,000</td>
<td>975,000</td>
<td>1,603,000</td>
<td>64,000</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1,083</td>
<td>-36,000</td>
<td>29,000</td>
<td>64,000</td>
<td>60,000</td>
<td>89,000</td>
<td>588,000</td>
<td>1,465,000</td>
<td>983,000</td>
</tr>
<tr>
<td>11</td>
<td>664</td>
<td>-21,000</td>
<td>0</td>
<td>-98,000</td>
<td>85,000</td>
<td>251,000</td>
<td>509,000</td>
<td>901,000</td>
<td>643,000</td>
</tr>
<tr>
<td>12</td>
<td>540</td>
<td>-56,000</td>
<td>1,000</td>
<td>39,000</td>
<td>45,000</td>
<td>131,000</td>
<td>384,000</td>
<td>702,000</td>
<td>440,000</td>
</tr>
<tr>
<td>13</td>
<td>1,648</td>
<td>43,000</td>
<td>67,000</td>
<td>163,000</td>
<td>754,000</td>
<td>474,000</td>
<td>1,092,000</td>
<td>2,233,000</td>
<td>936,000</td>
</tr>
<tr>
<td>San Joaquin Basin</td>
<td>3,935</td>
<td>-70,000</td>
<td>97,000</td>
<td>168,000</td>
<td>944,000</td>
<td>945,000</td>
<td>2,573,000</td>
<td>5,301,000</td>
<td>3,002,000</td>
</tr>
<tr>
<td>14</td>
<td>1,071</td>
<td>179,000</td>
<td>165,000</td>
<td>6,000</td>
<td>934,000</td>
<td>418,000</td>
<td>432,000</td>
<td>1,631,000</td>
<td>716,000</td>
</tr>
<tr>
<td>15</td>
<td>1,423</td>
<td>26,000</td>
<td>146,000</td>
<td>239,000</td>
<td>1,603,000</td>
<td>708,000</td>
<td>607,000</td>
<td>2,225,000</td>
<td>757,000</td>
</tr>
<tr>
<td>16</td>
<td>478</td>
<td>89,000</td>
<td>35,000</td>
<td>33,000</td>
<td>202,000</td>
<td>212,000</td>
<td>299,000</td>
<td>518,000</td>
<td>338,000</td>
</tr>
<tr>
<td>17</td>
<td>549</td>
<td>54,000</td>
<td>28,000</td>
<td>170,000</td>
<td>445,000</td>
<td>348,000</td>
<td>358,000</td>
<td>852,000</td>
<td>442,000</td>
</tr>
<tr>
<td>18</td>
<td>1,358</td>
<td>158,000</td>
<td>198,000</td>
<td>104,000</td>
<td>1,135,000</td>
<td>710,000</td>
<td>715,000</td>
<td>2,237,000</td>
<td>821,000</td>
</tr>
<tr>
<td>19</td>
<td>1,365</td>
<td>85,000</td>
<td>133,000</td>
<td>0</td>
<td>324,000</td>
<td>272,000</td>
<td>414,000</td>
<td>1,333,000</td>
<td>1,096,000</td>
</tr>
<tr>
<td>20</td>
<td>705</td>
<td>74,000</td>
<td>92,000</td>
<td>19,000</td>
<td>252,000</td>
<td>240,000</td>
<td>295,000</td>
<td>892,000</td>
<td>610,000</td>
</tr>
<tr>
<td>21</td>
<td>1,105</td>
<td>83,000</td>
<td>81,000</td>
<td>130,000</td>
<td>324,000</td>
<td>272,000</td>
<td>414,000</td>
<td>1,333,000</td>
<td>1,096,000</td>
</tr>
<tr>
<td>Tulare Basin</td>
<td>8,074</td>
<td>748,000</td>
<td>878,000</td>
<td>701,000</td>
<td>5,649,000</td>
<td>3,188,000</td>
<td>3,614,000</td>
<td>10,963,000</td>
<td>5,167,000</td>
</tr>
<tr>
<td>Total</td>
<td>20,378</td>
<td>300,000</td>
<td>1,000,000</td>
<td>300,000</td>
<td>9,300,000</td>
<td>7,600,000</td>
<td>15,700,000</td>
<td>25,900,000</td>
<td>10,300,000</td>
</tr>
</tbody>
</table>
Annual totals
Annual totals
Monthly for selected year types

A. Water Year 1975

B. Water Year 1990

C. Water Year 1998

EXPLANATION
- Net ground-water pumpage
- Water from compaction
- Net ground-water recharge from surface processes
- Water from storage
- Net stream leakage
Average annual totals by subregion
Groundwater Flow Paths

- Cell to cell flow (also called subsurface flow) is a key component of the groundwater budget.
- Used to analyze water quality issues including seawater intrusion.
- MODPATH post-processor to estimate groundwater flow paths from cell-by-cell output.
- MODPATH-OBS post-processor for MODPATH to get concentrations.
- MT3DMS and SEAWAT.
Simulated flow paths
Simulated travel times

- Child-model well-2 pumping well observation location
- Child-model well-3 pumping well observation location
- "Farm 1" recharge
- "Farm 2" recharge
- "Trench" cells
- "Pit" cell
- River recharge
- Parent-observation well-1 spans two layers and shows mixture but predominantly separate inflows from each source with respect to layers

Particle travel time, in years:
- 0
- 4
- 8
- 12
- 16
- 20
Simulated chloride concentrations
Subsidence Term in Groundwater Budget

- Subsidographs are used to determine location and magnitude of subsidence.
- However, budget can be helpful for determining if subsidence is "significant and unreasonable".
Change in groundwater budget due to additional pumping - shallow wells
Change in storage due to pumping deep wells
Streamflow Budget

- Provides the inflows and outflows to the stream network by stream reach
- Can be used to determine depletion of interconnected surface water
Annual Average groundwater and surface water exchange
Water Use Budget

- Provides the flow components related to the supply and demand of crops and other plants for each water balance subregion.
- Also called landscape budget, supply and demand budget, or farm budget.
- Includes groundwater pumping and recharge which are significant components of the groundwater budget.
- Includes the atmospheric budget components of precipitation and evapotranspiration.
EXPLANATION

Landscape budget through time for Pajaro Valley, California

- Blue: Pumpage
- Purple: Precipitation
- Red: Evapotranspiration from groundwater
- Green: Deep percolation
- Orange: Evapotranspiration from precipitation
- Black: Evapotranspiration from irrigation
- Cyan: Runoff

Annual totals
Simulated agricultural pumping

Hotter color = more Ag pumping
Simulated areal recharge

Hotter color = more recharge
For hydrologic year types
Simulated water supply
Simulated water demand
Comparing simulated and reported pumping – annual totals
Comparing simulated and reported pumping – by subregion
Combining budget types can help understand effects.
References – MODFLOW and Tools

References – Case Studies

