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Chapter 2

1-D HYDRODYNAMIC and
TRANSPORT MODEL SYSTEMS
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We begin with a restatement of the physical problem and a definition of terms.

2.1 Physical Problem

Unsteady flow and conservative contaminant (e.g. salinity) transport in a network of tidal channels.

2.2 Forcing

Downstream tide stage or discharge and upstream river stage or discharge hydrographs at open
boundaries1. Contaminant concentration or contaminant flux at downstream and upstream open

1Boundaries are either open or closed. Closed boundaries are no flow (solid wall) boundaries, where Q = 0.
These are uniquely defined as to both spatial location and physical character. In contrast, open boundaries have
neither a unique spatial location nor a unique physical character. The only certainty is that they are open to flow.
Their location is determined as part of the modeling process, and their physical character depends on the their
location and precisely what is happening there.
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boundaries. Non-point lateral inflows (outflows) of water and/or contaminant along the channel.
Point contaminant sources.

2.3 Space and Time Resolution

Adequate resolution of tide and flood hydrographs, and of point and non-point sources.

2.4 Field Equations

Incompressible flow is assumed, in which the mass density ρ is constant.

Mass conservation for water.
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in which x is local position, t is local time, η(x, t) is the local water surface elevation to a fixed
horizontal datum, Q(x, t) is the local discharge or cross-section-integrated flow, b(x, t) is the local
surface width and q(x, t) is the local lateral inflow per unit length. Note in particular that η is
not the water depth (see Figure 2.1). Each term in Equation 2.4.1 has dimensions L2T−1; in FSS
(ft-sec-slug) units, as adopted in all the subsequent balances, this is ft2s−1.

Momentum conservation for water.
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in which g is the gravitational acceleration, A(x, t) is the local flow cross-section and P (x, t) is the
local wetted perimeter. The boundary shear τ0(x, t) is estimated from a friction model, either
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(2.4.3)

in which f , C and n are the Darcy-Weisbach, Chezy and Manning friction factors respectively.
R = A/P is the local hydraulic radius. Each term in Equation 2.4.2 has dimensions L3T−2; in FSS
units, as adopted in all the subsequent balances, this is ft3s−2.
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Mass conservation for conservative contaminant.
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where C(x, t) is the local cross-section-averaged contaminant concentration, Ex(x, t) is the local
longitudinal dispersion coefficient and S(x, t) is a local point or non-point contaminant source.
Each term in Equation 2.4.4 has dimensions L2T−1; in FSS units, as adopted in all the subsequent
balances, this is ft2s−1.

Assuming that the friction factor, the lateral inflow q and the contaminant sources S can
be defined, the dependent variables2 are the local water surface elevation η(x, t) and the local
cross-section-integrated flow Q(x, t) in the hydrodynamic Equations 2.4.1 and 2.4.2 and the local
cross-section-averaged contaminant concentration C(x, t) in the contaminant transport Equation
2.4.4. In a natural channel, the surface width b, the flow area A and hydraulic radius R are
dependent on η and x.

2.5 Channel Geometry

b, A, P and R are space and time variable. Both the local water surface elevation η(x, t) and the
local bed elevation Z(x) are measured from a fixed horizontal datum plane (MSL or NGVD or
. . . )

2.6 Schematic Channel

In most of the present schematic applications, the channels have a trapezoidal cross-section, as
sketched in Figure 2.1 The bed width B will be fixed for each schematic channel reach but may vary
from reach to reach. The bed elevation Z may change along the reach, at most in a linear manner
with distance x along the channel. The side slopes of the schematic channels are 1 (vertical) to
SS (horizontal). All trapezoidal channels have SS = 2. The special case of a rectangular channel3

has SS = 0.

In most of the schematic problems outlined in the following, lateral inflows q and contaminant
sources S are zero throughout. The exception is hydrodynamic problem H8, whose specific focus
is lateral inflow.

2The flow area A(x, t) is an appropriate substitute for η(x, t). In this case, η(x, t) would be eliminated from the
conservation equations, by the substitutions ∂A/∂t = b∂η/∂t in Equation 2.4.1, and ∂A/∂x = b∂η/∂x in Equation
2.4.2.

3H9 through H11
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Figure 2.1: Cross-Section of Schematic Channel.

2.7 Evaluation

A set of benchmark test for the routine evaluation of numerical models of the hydrodynamics (H1
through H11) and contaminant transport (M1 through M4) in networks of estuarine channels has
been defined.

Each problem has a separate focus, and the details are deferred to Chapters 4 through 18. Two
modes of evaluation are routinely employed:

1. analysis of predicted response patterns, and

2. analysis of conservation balances

The expected response pattern changes with the focus, and is discussed in context in the
following chapters.

Though numerical models of unsteady, gradually-varied flow are theoretically based on the
continuous Equations 2.4.1 and 2.4.2, the equations actually solved by numerical model code
are discretized transformations of these equations. Independent confirmation that the numerical
predictions do indeed satisfy Equations 2.4.1 and 2.4.2 is a useful independent check on a numerical
code. The methodology for these analyses is outlined in Appendix D.

A direct comparison of the predicted response from the participant models would potentially
be useful. The present value was unfortunately compromised by

• the absence of a datum for comparison

With the inclusion of nonlinearities in the field equations, analytical solutions are not possible.
An exact solution is not available.

• participant re-definitions of the problem statements

These were generally minor (different cross-section shape, different space step, different time
step, different boundary conditions, . . . ), but sufficient to question the source of any differ-
ences.
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Problem H11, introduced late in the review process, provided the most suitable opportunity for
direct comparison. But even here the exact solution is unknown, and the comparison was to
another code at a very fine resolution.

The benchmark tests are designed to exercise the complete response spectrum of a numerical
model, including aspects such as mass and momentum balances, free and forced modes, boundary
forcing and numerical fidelity.

Not one of the benchmark tests is a routine application of the one-dimensional hydrodynamic
and transport models to the San Francisco Bay-Delta waterways. Each is a focussed schematic
problem that is intended to explore the response envelope, and in some cases to stretch that
envelope. Each problem is a legitimate sub-set of all the processes that make up a complete flow
pattern.

Not all response patterns come to the fore in every problem. It may be that some aspects
exercised by the benchmark tests do not have a significant role in historical Bay-Delta modeling.
But it cannot be said with certainty that future scenarios (levee breaks, flow control structures,
diversions, new channels, extreme floods, tsunami penetration, salinity barriers, . . . ) will not
accord them an enhanced role.

And not all models will have an established capability to accommodate every test. This is
expected. But it is also an important observation in identifying both the range of applicability
and the limits of applicability.


