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Chapter 9

H6: Steady Flow through a Gate
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9.1 Problem Specification

H6 Steady flow through a channel gate

Focus gate and boundary transients, network connectivity.

Channel bed is horizontal from upstream point A to downstream point D (see Figure 9.1). The
trapezoidal channel bed width B is 50 ft. At A, xA = 0 ft and ZA = -20.0 ft. At D, xD = 50,000
ft and ZD = -20.00 ft. Channel friction factor is constant at Darcy-Weisbach f = 0.03 or Manning
n = 0.02.

An underflow gate is located at xB = xC = +20,000 ft, with point B on the upstream side,
and point C on the downstream side. At t = 0 s, the gate is fully open, and remains fully open
throughout.

The hydrodynamic initial conditions at t = 0 s are quiescence:

η(x, 0) = 0 and Q(x, 0) = 0 (9.1.1)
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Figure 9.1: Definition sketch for Problem H6.
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Figure 9.2: Longitudinal Profile and Cross-Section at Gate

The gate (see Figure 9.2) operates with steady throughflow following

Q = CGAG (2g∆η)1/2 (9.1.2)

The gate discharge coefficient CG is 0.5. The water surface elevation difference across the gate is
∆η = |ηB − ηC |, the flow being in the direction of falling elevation. The gate flow area is

AG =

{
W [max(ηB, ηC)− Zsill] for max(ηB, ηC) > Zsill

0 for max(ηB, ηC) ≤ Zsill

(9.1.3)

where W = 40 ft is the uniform gate width, and Zsill = -15 ft is the elevation of the sill.
Open boundary conditions are fixed at

QA(t) = +20, 000 ft3/s and ηD(t) = +0 ft for all t > 0 (9.1.4)

Use a fixed computational space step ∆x = 500 ft and a fixed computational time step ∆t =
30 s.

Compute and write to file in the standard format the initial conditions at t = 0 and the
model predictions for every 90 s (3 time steps) for 2.5 hours.
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Figure 9.3: Characteristic Paths for Problem H6

9.2 Initial Transients

Channel gates have a hydrodynamically-significant role in the Bay-Delta circulation. Their objec-
tive is flow control. The hydraulics are well known (Equation 9.1.2), but are based on a steady
flow argument and require an empirical coefficient CG.

Initial transients are expected from two sources,

1. at A at t = 0 by the sudden change from the Q = 0 initial conditions to the Q = +20,000
ft3/s boundary condition, and

2. at the gate BC by forcing the Equation 9.1.2 relationship between η and Q.
Equation 9.1.2 is empirical and steady. Flow in the neighborhood of the gate may be rapidly-
varied in both space and time, and the gate condition may conflict with the gradually-varied
conservation Equations 2.4.1 and 2.4.2. Even in the steady state, Equations 2.4.1 and 2.4.2
do not reduce to Equation 9.1.2.

There is an anecdotal record of difficulties with gates in estuarine channel models, though little
detail appears in the published literature.

The sudden changes initiated at A and at BC, and the boundary reflections can be followed on
the characteristic paths diagram, Figure 9.3. The initial disturbance propagates along path A123
from the upstream boundary, through the gate at 1 to the downstream boundary at 2, where it is
reflected back through the gate at 3. Path 1456 is the initial reflection from the gate, re-reflection
from the upstream boundary and propagation through the gate at 5 toward the downstream
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boundary at 6. The initial disturbance is a step change at x = 0, so that all these disturbances are
also step changes. Mass and momentum balances will be investigated at x = 3,000 ft and 23,000
ft, marked as dashed lines. Disturbance intersections should be identifiable at points a through f.

Table 9.1 has been prepared as a aide in interpretation of the subsequent mass and momentum
balances. It lists the travel distances along these characteristic paths to points a through f, and
the time to reach these points. It has been assumed that the propagation speed along these paths

a b c d e f

x ft 3,000 37,000 43,000 23,000 63,000 77,000

t s 142 1752 2036 1089 2984 3647

Table 9.1: Distances and Times along Characteristic Paths

is approximately
√

gA0/b0 = 21.1 ft/s throughout, where A0 is the initial cross-section area and
b0 is the initial surface width.

9.3 Numerical Filtering

Significant free mode responses are a natural part of the present problem. These are inevitably
short wave length modes, and confusingly suggestive of numerical instability. Though perhaps
visually embarrassing, these free mode responses are not an indication of a numerical deficiency.
They are the expected physical response to the forcing at A and the gate at BC.

The initial transients at A require particular attention. The transients are initiated by the
rapid introduction of an inflow at A. In a theoretical linear approximation (Bode and Sobey 1984),
this rapid change is communicated as an eigenmode expansion of the form

η̃(x, t) = exp(−λt/2)

∞∑
n=0

(An cosωnt + Bn sinωnt) sinβnx

Q̃(x, t) = b0 exp(−λt/2)

∞∑
n=0

[(−λAn/2+ωnBn) cosωnt− (ωnAn+λBn) sinωnt]
cosβnx

βn

(9.3.1)

where n = 0,1,2, . . . and the free mode wave numbers and frequencies are

βn =

(
n+

1

2

)
π

L
, ωn = C0

[
1−

(
λ

2C0βn

)2
]1/2

βn (9.3.2)

The An and Bn are listed in the appendix of Bode and Sobey (1984); these details are unnecessary
here. λ is the linear friction coefficient and C0 is the linearized phase speed. The leading wave
number modes βn = 2π/Ln would correspond to wave lengths Ln = 80,000 ft, 26,667 ft, 16,000 ft,
. . . . As this eigenmode expansion must follow the rapid initial change in Q, it must be dominated
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by the higher modes (large n) for which the wave length is very short. But the discrete spatial
resolution cannot resolve wave numbers beyond the Nyquist limit βN = π/∆x (B̊ath 1974). Longer
wave numbers (shorter wave lengths) are aliased or folded about the Nyquist limit to shorter wave
numbers (longer wave lengths). The resulting numerical response has a concentration of wave
numbers just below the Nyquist limit, at wave length LN = 2π/βN = 2∆x. This aliased response,
sometimes referred to a “2∆x” modes, is expected in the initial Q evolution from A. Reducing
the space step will change the apparent wave length of the aliased modes, but not eliminate them.
As these are free modes, albeit aliased, they will be decayed by friction, as suggested by Equation
9.3.1. The appearance of these aliased free modes in the initial Q response is both natural and
expected. It is natural because of the step change in the Q boundary condition at A. It is expected
because to the finite spatial resolution, ∆x, of the numerical representation.

This problem has two potential sources of local short wave length disturbances. Such distur-
bances draw immediate visual attention. They will not be observed in the real world, only in a
numerical representation such as this. They are a direct and understandable consequence of efforts
to represent “sub-grid scale” processes1 in a discrete numerical model. They are expected. They
are not an indication of some deficiency in a numerical model, but rather compelling evidence that
the numerical model has been both well formulated and carefully coded.

But the very suggestion of some code deficiency leaves this problem very vulnerable to the
“smooth is beautiful” disease. The wave lengths of free modes are often relatively short, and
might be removed by low-pass filtering. But excessive filtering is a most undesirable feature of any
numerical code that seeks physical integrity. In a classical contribution to the numerical modeling
literature, Gresho and Lee (1981) warn

Don’t suppress the wiggles - they’re telling you something!

The message is clear and compelling. The wiggles have a crucial role to play, as indicators
of potential problems. Filter code is not discriminating. It will remove physically appropriate
responses along with numerical inconveniences.

Short wave length response might be suppressed by either

1. natural filtering by the adopted numerical algorithm, or

2. specific filter code to suppress gate transients

The former is not a physically desirable property of a numerical algorithm. The latter raises
concerns about the wider impact of the gate filter.

9.4 Contra Costa Water District

Figure 9.4 shows the CCW-predicted η and Q evolution toward the steady state. This is a vi-
sually impressive result. The characteristic paths are shown very clearly, in particular the initial
disturbance propagating from the upstream boundary, the reflection of this disturbance from the

1Step change in Q boundary condition at A, and local rapidly-varied flow in neighborhood of gate.
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gate (in the η plot) and from the downstream boundary (in the Q plot), the initiation of a further
disturbance propagating downstream from the gate (in the Q plot), and finally a reflection of the
gate disturbance from the upstream boundary (in the η plot). All this is as anticipated in Figure
9.3.

Figure 9.5 shows a detail in the neighborhood of the gate, and Figure 9.6 the water surface
elevations ηB and ηC each side of the gate, and the corresponding flows QB and QC (which should
be identical). Both are very clean. There is evidence of characteristic events 1,5 and 3 in Figure
9.3. But there is no evidence of any initial gate transients in either Figures 9.5 or 9.6, despite the
sudden rise in water surface elevation at about 650 s on arrival of the characteristic Aa1 at point
1 (Figure 9.3). The visually smooth response and the specific absence of initial transients from
either A or BC suggests heavy damping of shorter wave length responses.

The evidence from Figure 9.4 at A (x = 0) suggests that the CCW code heavily damps the
shorter wave length modes that were expected (see §9.3) from the step change in Q at A. Heavy
damping is in fact an implicit and documented2 property of the three-point method of character-
istics algorithm. While strong numerical filtering of the shorter response modes should not be a
problem in many typical Bay-Delta applications, there are some applications (levee breaks, flow
control structures, diversions, extreme floods, tsunami penetration, salinity barriers, . . . ) where
this may be a concern.

The evidence from Figure 9.6 at BC (x = 20,000 ft) also suggest that the CCW code does
include specific damping of gate transients. This is acknowledged3 by CCW. Their approach
seems well researched and appropriate,

Figure 9.7 shows the time history of the mass and momentum balances at locations x = 3,000
ft and 23,000 ft. There are suggestions4 of initial transients here. In part (a) for x = 3,000 ft,

2In its primitive form, the three-point method of characteristics algorithm is equivalent (Hoffman 1992, p.747)
to the Lax scheme. And the Lax scheme strongly damps the short wavelength modes (Abbott 1979, p.158 and
Hoffman 1992, Figure 15.4).

3The following commentary was provided by CCW (Shum, 27 April 2001): “In most simulations, the alternating
“overshoot” and “undershoot” of the predicted gate flow from the steady-state solution leads to the so-called wiggles
. These “wiggles”, however, are numerical and not physical, and decreases in magnitude with smaller grid size and
time step. In extreme cases when both the gate coefficient and time step are large whereas surface slope on the two
sides are small, simulating gate flows using instantaneous stages at the two sides of the gate could lead to a reverse
of the direction of the flow at the next time-step even though the water level away from the gate at the upstream
end is higher than the downstream end.
Many numerical schemes use a weighted-average of the computed flows through the gate over two or more time-
steps. . . . An important consideration for simulating gate flows is to adjust this weighting-scheme to the time-step,
the gate coefficient, and the hydraulic characteristics such as the surface slopes both upstream and downstream.
There is no unique or best answer under all hydrological conditions in the Delta. The Fischer Delta Model uses a
0.75-0.25 (factors for the simulated flow in the previous and the current time-step, respectively) weighting-scheme
to compute the flow through the gate at each time-step.
This weighting-scheme is based on empirical tests. These numerical characteristics need to be described in the report
so that readers of the peer review can understand these considerations. The reference to ’smooth is beautiful’ disease
is inappropriate.”

4Sudden changes are not sufficiently gradually varied to be resolved by the numerical code, and a local imbalance
in mass and/or momentum might be expected. But the local imbalances are not as strong as expected, presumably
because of the strong numerical filtering of the shorter modes. At all other times, mass and momentum should be
conserved.



H6 9-7

0 1 2 3 4 5

x 10
40

2000
4000

6000

0

10

20

x (ft)

η(x,t) evolution

t (s)

η 
(f

t)

0 1 2 3 4 5

x 10
40

2000
4000

6000

0

1

2

x 10
4

x (ft)

Q(x,t) evolution

t (s)

Q
 (

ft3 /s
)

H6-CCW /rjs /05-Oct-2000 21:26

Figure 9.4: H6 CCW-predicted η and Q solution field evolution.
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Figure 9.5: H6 CCW-predicted η and Q solution field evolution in neighborhood of gate.
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Figure 9.6: H6 CCW-predicted η and Q evolution at gate.
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there is an out-of-balance spike in mass and/or momentum conservation at times corresponding to
locations a, b and c in Figure 9.3. In part (b) for x = 23,000 ft, there are suggestions of transients
at at times corresponding to d, e, and f in Figure 9.3. This is the expected response.



H6 9-11

0 2000 4000 6000
-1

-0.5

0

0.5

1

t (s)

F
S

S
 u

ni
ts

Mass balance

(a) x = 3,000 ft

S     
A     
Σ

0 2000 4000 6000
-20

-10

0

10

20

t (s)

F
S

S
 u

ni
ts

Momentum balance
TI    
AI    
G     
F     
Σ

0 2000 4000 6000
-1

-0.5

0

0.5

1

t (s)

F
S

S
 u

ni
ts

(b) x = 23,000 ft

0 2000 4000 6000
-20

-10

0

10

20

t (s)

F
S

S
 u

ni
ts

H6-CCW-55 /rjs /27-May-2001 20:02

Figure 9.7: H6 CCW-predicted conservation balances at x = 3,000 ft and 23,000 ft.
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9.5 Department of Water Resources

Figure 9.8 shows the DWR-predicted5 η and Q evolution toward the steady state. This is a
visually impressive result. The characteristic paths are shown very clearly, in particular the initial
disturbance propagating from the upstream boundary, the reflection of this disturbance from the
gate (in the η plot) and from the downstream boundary (in the Q plot), the initiation of a further
disturbance propagating downstream from the gate (in the Q plot), and finally a reflection of the
gate disturbance from the upstream boundary (in the η plot).

There is a weak suggestion of initial transients from A in the Q response, Figure 9.8b. The
absence of a strong but aliased initial transient response suggests that the DWR code heavily damps
the shorter wave length modes that were expected (see §9.3) from the step change in Q at A. The
likelihood of heavy numerical damping was anticipated in an earlier (see §3.2.2) discussion of the
box algorithm adopted by DWR. While strong numerical filtering of the shorter response modes
should not be a problem in many typical Bay-Delta applications, there are some applications (levee
breaks, flow control structures, diversions, extreme floods, tsunami penetration, salinity barriers,
. . . ) where this may be a concern.

Figure 9.9 shows a detail in the neighborhood of the gate, and Figure 9.10 the water surface
elevations ηB and ηC each side of the gate, and the corresponding flows QB and QC (which should
be identical). Both are very clean. There is evidence of characteristic events 1,5 and 3 in Figure
9.3. But there is no evidence of any free mode generation at the gate, despite the sudden rise in
water surface elevation at about 650 s on arrival of the characteristic Aa1 at point 1 (Figure 9.3).
The smooth QB(t) (or QC(t)) evolution in the neighborhood of event 1, in particular, suggests
that the DWR code does include6 specific damping of gate transients. It is possible that any
gate transients are aggressively damped by the box algorithm’s implicit numerical filtering of the
shorter modes.

Figure 9.11 shows the time history of the mass and momentum balances at locations x = 3,000
ft and 23,000 ft. Mass and momentum are generally conserved at these selected locations upstream
and downstream of the gate. The exceptions are a sequence of identifiable spikes that correspond
with locations a, b and c in part (a) and d, e and f in part (b). This is the expected response.

5The DWR data file reports the output time step as 1 s; it was apparently not the specified 90 s, but 60 s. The
output time step has been changed to 60 s for the following analyses.

6The following commentary was provided by DWR (2 February 2001): “This is not correct. DSM2 does not use
filters of any kind. Based on our experience, DSM2 has always produced a smooth response in and around gates,
except when extremely wide/deep weirs are simulated with large time steps (∆t > 15 minutes).”
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Figure 9.8: H6 DWR-predicted η and Q solution field evolution.
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Figure 9.9: H6 DWR-predicted η and Q solution field evolution in neighborhood of gate.
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Figure 9.10: H6 DWR-predicted η and Q evolution at gate.
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Figure 9.11: H6 DWR-predicted conservation balances at x = 3,000 ft and 23,000 ft.
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9.6 Resource Management Associates

Figure 9.12 shows the RMA-predicted7 η and Q evolution toward the steady state. As for the CCW
and DWR results (Figures 9.4 and 9.8), this is a visually impressive result. The characteristic
paths are shown very clearly, in particular the initial disturbance propagating from the upstream
boundary, the reflection of this disturbance from the gate (in the η plot) and from the downstream
boundary (in the Q plot), the initiation of a further disturbance propagating downstream from the
gate (in the Q plot), and finally a reflection of the gate disturbance from the upstream boundary
(in the η plot). All this is as anticipated in Figure 9.3.

Initial transients from the step change in Q at A are an evident feature. These transients
(§3.2.2) are the expected response. There seems to be little numerical damping of the shorter
wavelength modes by the RMA numerical algorithm, in contrast to the strong numerical damping
with the CCW (Figure 9.4) and DWR (Figure 9.8) results. As expected, these disturbances are
gradually decayed by friction. This is the expected result.

Figure 9.13 shows a detail in the neighborhood of the gate, and Figure 9.14 the water surface
elevations ηB and ηC each side of the gate, and the corresponding flows QB and QC (which should
be identical). There is evidence of characteristic events 1,5 and 3 in Figure 9.3. But there is no
clear evidence of any free mode generation at the gate, despite the sudden rise in water surface
elevation at about 650 s on arrival of the characteristic Aa1 at point 1 (Figure 9.3). The moderately
smooth QB(t) (or QC(t)) evolution in the neighborhood of event 1 perhaps suggests that the RMA
code does include specific damping of gate transients. It is possible that any gate transients are
aggressively damped by the box algorithm’s implicit numerical filtering of the shorter modes.

Figure 9.15 shows the time history of the mass and momentum balances at locations x = 3,000
ft and 23,000 ft. Mass and momentum are generally conserved at these selected locations upstream
and downstream of the gate. The exceptions are a sequence of identifiable spikes that correspond
with locations a, b and c in part (a) and d, e and f in part (b). The c and d spikes are especially
strong, but this is consistent with non-suppression of the shorter wavelengths. This is the expected
response.
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Figure 9.12: H6 RMA-predicted η and Q solution field evolution.
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Figure 9.13: H6 RMA-predicted η and Q solution field evolution in neighborhood of gate.
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Figure 9.14: H6 RMA-predicted η and Q evolution at gate.
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Figure 9.15: H6 RMA-predicted conservation balances at x = 3,000 ft and 23,000 ft.


