WESTSIM / SHEDTOOL : Toolbox for simulating groundwater conjunctive use, agricultural drainage and wetland return flows on the west-side of the San Joaquin Basin

Nigel W.T. Quinn, PhD, PE

Berkeley National Laboratory, Berkeley, CA U. S. Bureau of Reclamation, Sacramento, CA

Jafar A. Faghih, PE MWH Americas Inc., Sacramento, CA

CWEMF Central Valley Groundwater Workshop July 11, 2008

- Model support 2002-2005
- IWFM overview
- WESTSIM description
- Calibration tools
- Other related work/Status

Model Support (2002-2005)

- Model development
- Data collection
- Conversion of input files from IGSM to IWFM
- Extending simulation period and input data from 1970-1993 to 1970-2000
- Development of calibration tools

MODELING TOOL: IWFM

- Integrated Water Flow Model (IWFM), formerly known as IGSM2, developed by the Modeling Support Branch of the Bay-Delta Office of DWR
- Simulates GW, SW, stream-groundwater interaction, and other components of the hydrologic system
- Models GW flow as a quasi 3-D system and solves the governing flow equation using the Galerkin finite element method
- Land use based approach of calculating water demand
- Z-budget post-processor for subsurface flow computations

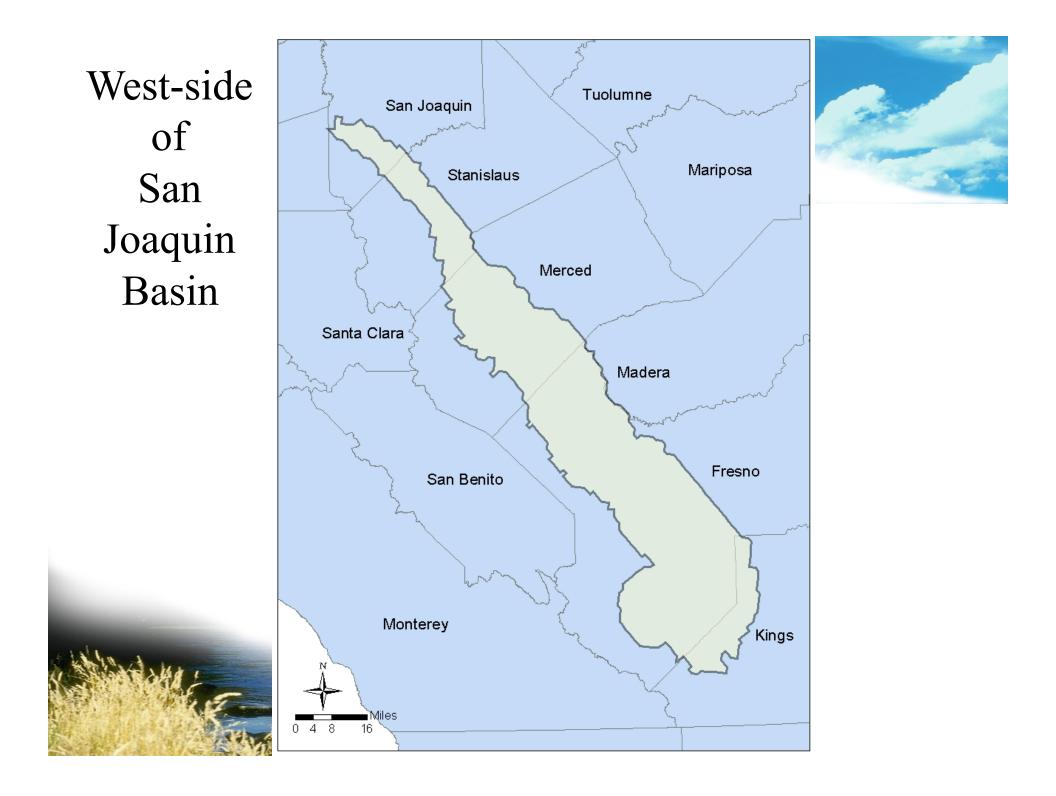
WESTSIM MODEL

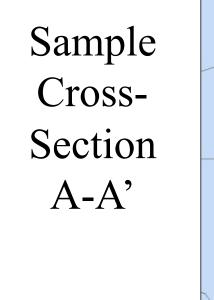
- West-side of San Joaquin River Basin
- Monthly time step
- Contains 63 subregions, which are defined by collections of finite elements, to represent individual water districts, refuges, or cities
- Contains detailed inputs of surface water use, land use, evapotranspiration, streamflow, return flows, and aquifer characteristics for the period of 1970-2000
- Would simulate agricultural water demand, groundwater pumping, groundwater recharge, and stream-aquifer interaction

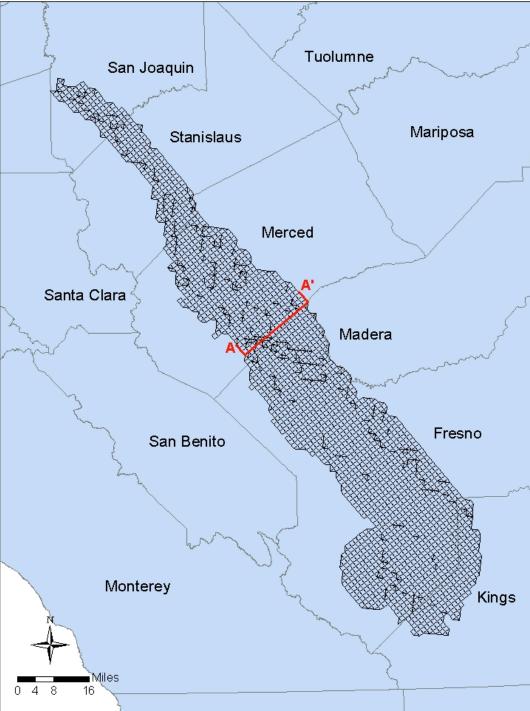
Possible Applications

- Groundwater impact analysis
- Land retirement
- Conjunctive use planning
- Safe yield analysis
- Salinity management

WESTSIM MODEL FEATURES

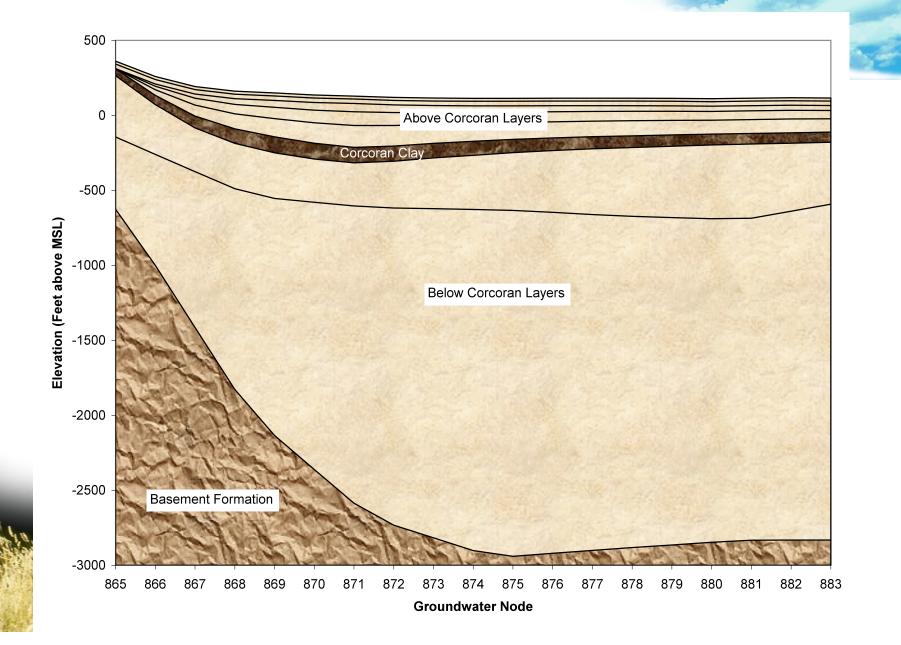

Model region	1,550,874
Subregions	63
Elements	2,602
Groundwater Nodes	2,716
Crop types	16
Aquifer layers	7
Land use types	4
Streams Modeled	11
Stream Nodes	351
Small Watersheds	6
Rainfall Stations Kettleman City	3
Simulation Time Step	
Calibration Period	
Rainfall Stations Kettleman City Simulation Time Step	6 3

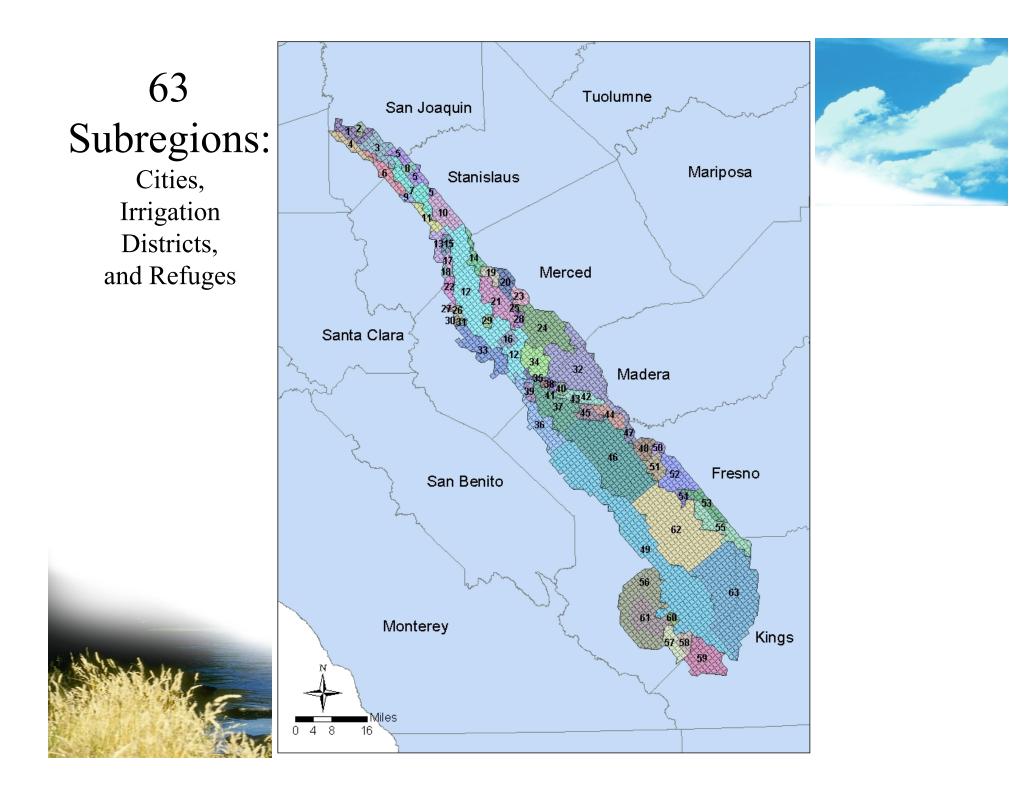

acres WDs/IDs, Cities, Refuges


5 above Corcoran Clay Agricultural, urban, native vegetation, riparian

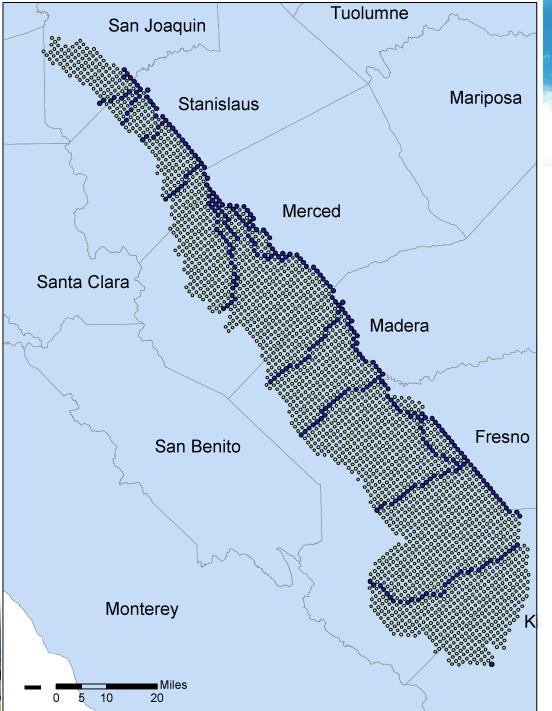
Tracy, Los Banos,

Monthly 1970-2000





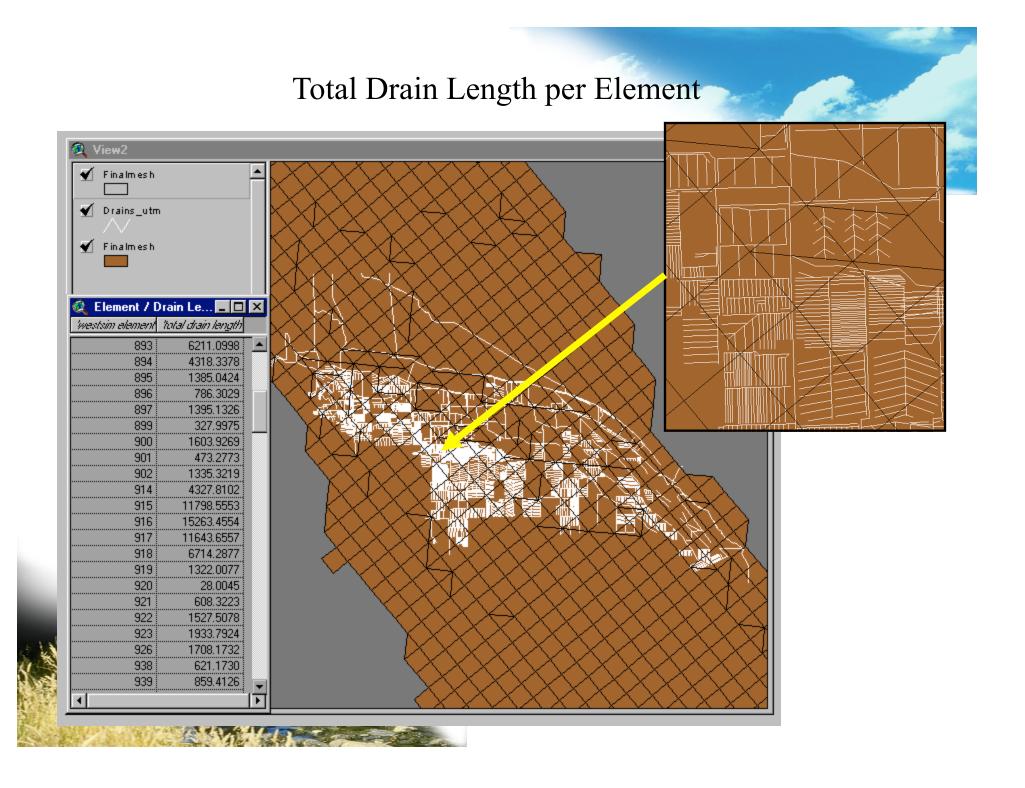
Sample Cross-Section A-A'



SUBREGION LIST

rr		
1 - Westside Water District	22 - Mustang Water District	43 - Widren Water District
2 - City of Tracy	23 - San Luis/Kesterson (South)	44 - Firebaugh Canal Co (South)
3 - Banta Carbona Irrigation District	24 - San Luis Canal Company	45 - Broadview Water District
4 - Plainview Water District	25 - Salt Slough	46 - Westlands Water District (Northeast)
5 - San Joaquin\Stanislaus Unincorporated	26 - Quinto Water District	47 - Mendota Water Management Agency
6 - Hospital Water District	27 - Lansdale Water District	48 - Fresno Slough Water District
7 - West Stanislaus Irrigation District	28 - Los Banos Water Management Agency	49 - Westlands Water District (West)
8 - El Solyo Water District	29 - Volta Water Management Agency	50 - Traction Ranch
9 - Kern Canyon Water District	30 - Centinella Water District	51 - Tranquility Irrigation District
10 - Patterson Water District	31 - Romero Water District	52 - James Irrigation District
11 - Del Puerto Water District	32 - Central California Irrigation District (South)	53 - Stinson Water District
12 - Central California Irrigation District (Central)	33 - San Luis Water District (DMC)	54 - Mid Valley Water Authority (North)
13 - Sunflower Water District	34 - Grasslands Water District (South)	55 - Mid Valley Water Authority (South)
14 - Stanislaus\Merced Unicorporated	35 - Eagle Field/CCID Contractors	56 - City of Coalinga (West)
15 - Orestimba Water District	36 - San Luis Water District (SLC)	57 - Pleasant Valley Water District (South)
16 - City of Los Banos	37 - Panoche Water District (DMC/SLC)	58 - Fresno County Unincorporated
17 - Foothill Water District	38 - Eagle Field Water District (South)	59 - City of Avenal
18 - Davis Water District	39 - Pacheco Water District	60 - City of Coalinga (East)
19 - San Luis/Kesterson (North)	40 - Mercy Springs Water District	61 - Pleasant Valley Water District (North)
20 - West Gallo	41 - Oro Loma Water District	62 - Westlands Water District (East)
21 - Grasslands Water District (North)	42 - Firebaugh Canal Co (North)	63 - Westlands Water District (Southeast)
19 - San Luis/Kesterson (North) 20 - West Gallo	40 - Mercy Springs Water District 41 - Oro Loma Water District	61 - Pleasant Valley Water District (N 62 - Westlands Water District (East)

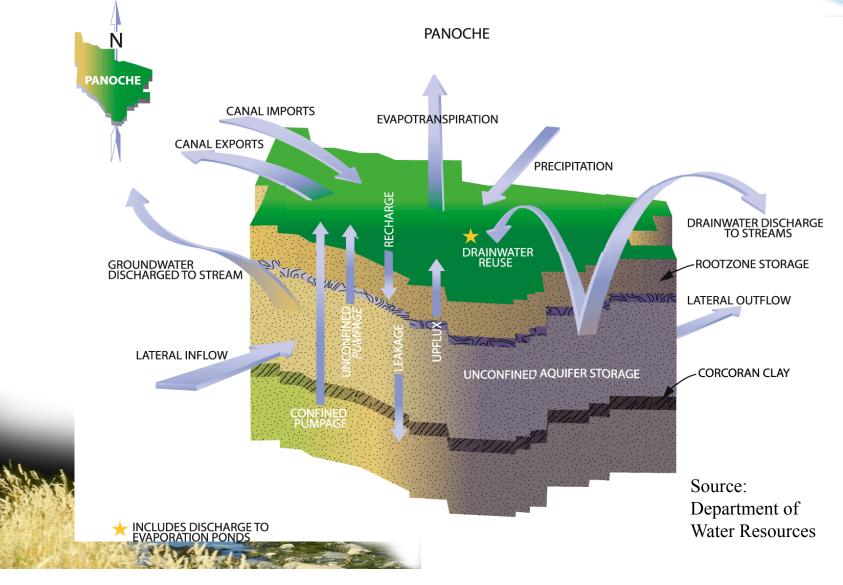
351 Stream Nodes



WESTSIM INPUT DATA

- Landuse/cropping (DWR Surveys, USBR)
- Precipitation (NCDC)
- Evapotranspiration (USGS, CIMIS)
- Streamflow (USGS, DWR)
- River Diversions (SJRIO2)
- Central Valley Project deliveries (USBR)

WESTSIM SIMULATION OUTPUT

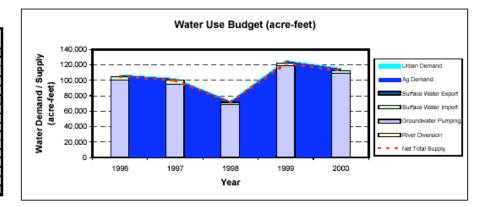

- Water Budgets
 - Land and Water Use
 - Groundwater
 - Root Zone Moisture
 - Stream
- Groundwater Surface Elevations
- Stream Flows

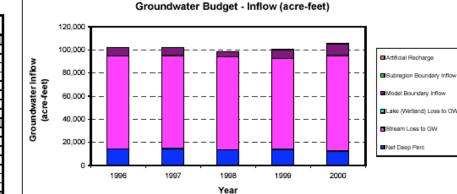
GROUNDWATER BUDGET (In - Out = Δ Storage)

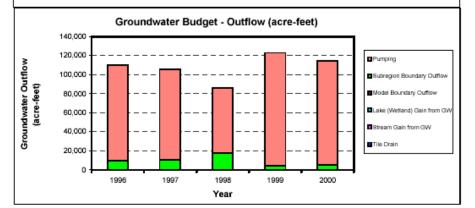
- Inflows:
 - Deep Percolation
 - Stream Losses to GW
 - Horizontal Flows In
 - Artificial Recharge
- Outflows:
 - Tile Drainage
 - Groundwater Pumping
 - Stream Gains from GW
 - Horizontal Flows Out

GROUNDWATER BUDGET SCHEMATIC

SURFACE AND GROUNDWATER BUDGETS

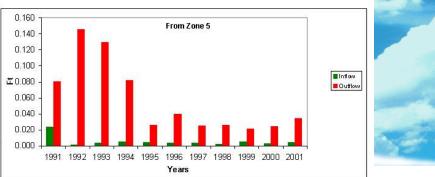

- Water use and groundwater budgets in tabular and graphical format.
- Wanted to develop a water balance on a subregion basis to aid in calibration and to encourage interaction with water districts. (Water Budgets are required for USBR Contract Renewal)




Summary Subregion 48_Fresno Slough WD.xls

Water Use Budget (acre-feet) Fresno Slough Water District

Water Use Budget	1996	1997	1998	1999	2000	5-Year Average
DEMAND						
Ag Demand	107,386	102,525	72,908	125,548	115,651	104,803
Urban Demand	0	0	0	0	0	0
Total Demand	107,386	102,525	72,908	125,548	115,651	104,803
SUPPLY						
River Diversion	0	0	0	0	0	0
Groundwater Pumping	100,170	94,736	68,496	118,719	109,157	98,255
Surface Water Import	4,781	5,292	2,663	3,552	3,258	3,909
Total Supply	104,951	100,028	71,159	122,270	112,415	102,165
Surface Water Export	0	0	0	0	0	0
Non-recoverable Loss						
Net Total Supply	104,951	100,028	71,159	122,270	112,415	102,165
Shortage (Surplus)	2,435	2,497	1,749	3,278	3,236	2,639



Groundwater Budget (acre-feet)

	Fresno Slough Water District												
Groundwater Budget	1996	1997	1998	1999	2000	5-Year Average							
INFLOW													
Net Deep Perc	13,952	14,658	13,234	13,836	12,243	13,584							
Stream Loss to GW	80,616	80,542	80,871	78,616	82,868	80,703							
Lake (Wetland) Loss to GW	0	0	0	0	0	0							
Model Boundary Inflow	7,537	7,130	4,185	7,809	10,278	7,388							
Subregion Boundary Inflow	0	0	0	0	0	0							
Artificial Recharge	0	0	0	0	0	0							
Total Inflow	102,104	102,330	98,290	100,261	105,389	101,675							
OUTFLOW													
Tile Drain	0	0	0	0	0	0							
Pumping	100,170	94,736	68,496	118,719	109,157	98,255							
Stream Gain from GW	0	0	0	0	0	0							
Lake (Wetland) Gain from GW	0	0	0	0	0	0							
Model Boundary Outflow	0	0	0	0	0	0							
Subregion Boundary Outflow	9,434	10,537	17,555	4,222	5,404	9,431							
Total Outflow	109,604	105,273	86,051	122,941	114,561	107,686							
Change in Storage	-7,499	-2,943	12,239	-22,680	-9,172	-6,011							
Change in Storage (AF/acre)	-0.65	-0.26	1.06	-1.97	-0.80	-0.52							

Water use and groundwater budgets

Select Zone Number	<u>10</u>	
3		Notes
		Zone 73 is Below Corcoran Clay Zone 10 Area = 20802 ACRES
		Number of Zones = 126
	Volume (Acre-Feet)	
Select Result Units	🗖 Water Depth (ff)	"Volume divided by the Total Zone Area"
	🖸 Water Depth (ft)	"Volume divided by the Irrigated Area ONLY"

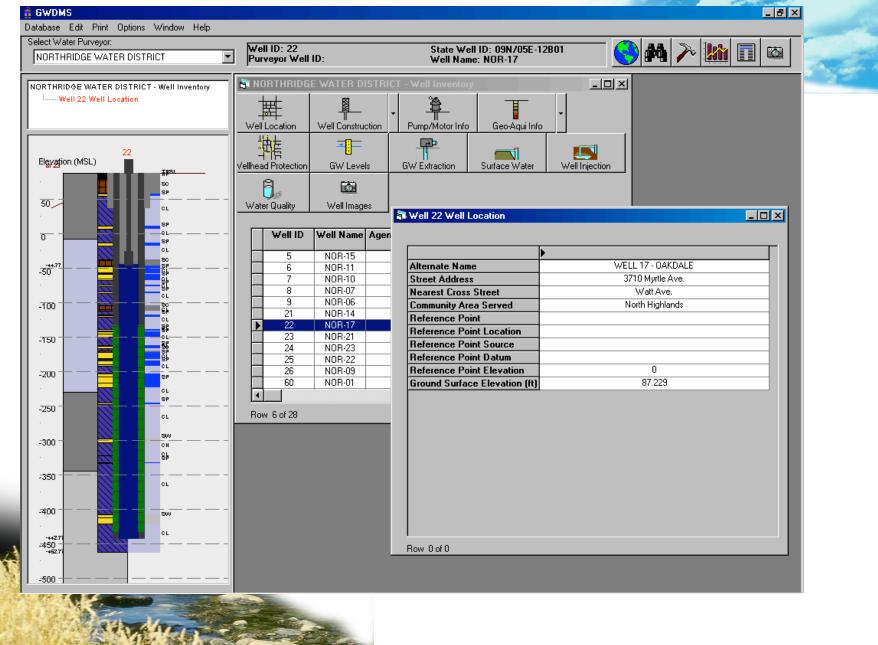
IGSM2 ZONE BUDGET IN Ft FOR ZONE 10

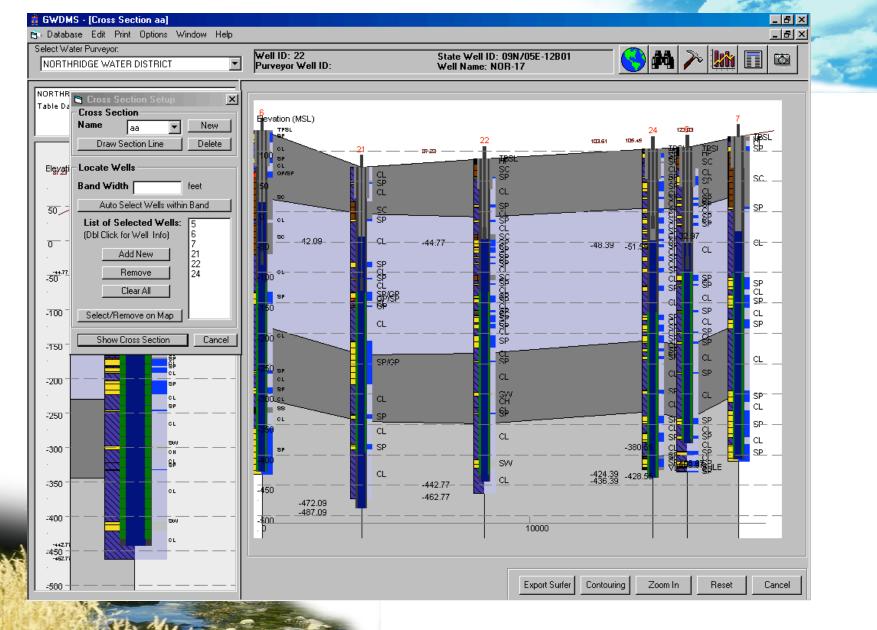
Inflow	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	AnnuAvera
Streams Loss to GW	1.43	0.79	0.51	0.49	0.14	0.43	0.17	0.19	0.16	0.26	0.18	0.43
Tile Drains	-	-	-	-	-	-	-		-	-	-	-
Subsidence				1980 L		843.			(*	243		
Net Deep Percolation	6.27	3.07	3.32	3.78	0.75	2.13	1.48	1.37	1.77	1.22	1.37	2.41
General Head BC	0.03	0.01	0.01	0.01	0.00	0.01	0.00	0.00	0.01	0.00	0.00	0.01
Small Watershed Baseflow	-	-	-	574	-		-	-		1.570	-	-
Diversion Recoverable Loss	2	2	25	220	2	525	2	2	52	925	2	2
Bypass Recoverable Loss		2	2	347	2	1940		2	12	14-1	25	
Lakes(Wetland)Loss to GW	-	19	-	241	2	1.45	-	19 (L)		1943	-	-
Pumping by Element		æ	÷ 1	1. 1.		20 6 2		-		20 4 2		-
From Zone 5	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
From Zone 7	1.14	0.30	0.25	0.20	0.08	0.13	0.11	0.12	0.13	0.14	0.15	0.25
FromZone 11	0.69	0.33	0.31	0.19	0.07	0.17	0.18	0.20	0.19	0.22	0.22	0.25
FromZone 12	0.51	0.35	0.31	0.19	0.06	0.09	0.05	0.05	0.07	0.06	0.05	0.16
FromZone 73	0.13	0.23	0.16	0.06	0.03	0.03	0.02	0.02	0.01	0.01	0.01	0.06
Total	10.23	5.09	4.89	4.93	1.13	2.98	2.01	1.95	2.34	1.91	1.99	3.59

Outflow	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	AnnuAvera
Streams Gain From GW	1.51	1.60	1.38	0.75	0.46	0.73	0.58	0.59	0.69	0.74	0.67	0.88
Tile Drains	-1	-	-	14	-	545 T	-	-		-		110955.2
Subsidence		-	-	100	-	23 6 2	.	-		2 - 2	.	5
Net Deep Percolation	52			1.71		23754		-	15	2373	52	
General Head BC	2.12	2.43	2.10	1.38	0.58	0.80	0.63	0.66	0.66	0.68	0.69	1.16
Small Watershed Baseflow	2	-	2	1	2	1.2	2	4	12	125	3	-
Diversion Recoverable Loss	25	2	2	3 4 3	2	380 C	25		72	840 C	4	23
Bypass Recoverable Loss		19 (H)	2	8 9 8	1	2163	-0	(A)	(-): ;; ;	8	
Lakes(Wetland) Gain From GW	-0	æ	8	3 3 87	8	28 6 2	-52	æ	6 -	Net 2	1 5	
Pumping by Element	-			5.58	-	20704	-	-	0.02	20752	0.02	0.00
To Zone 5	0.08	0.15	0.13	0.08	0.03	0.04	0.03	0.03	0.02	0.02	0.03	0.06
To Zone 7	0.08	0.19	0.14	0.10	0.03	0.05	0.03	0.03	0.02	0.02	0.03	0.07
To Zone 11	0.01	0.03	0.02	0.02	0.01	0.01	0.00	0.00	0.00	-	0.00	0.01
To Zone 12	0.05	0.05	0.05	0.06	0.03	0.05	0.05	0.07	0.06	0.07	0.10	0.06
To Zone 73	0.27	0.03	0.04	0.04	0.02	0.04	0.04	0.05	0.06	0.07	0.07	0.07
Total	4.13	4.48	3.86	2.44	1.15	1.71	1.36	1.43	1.53	1.61	1.62	2.30

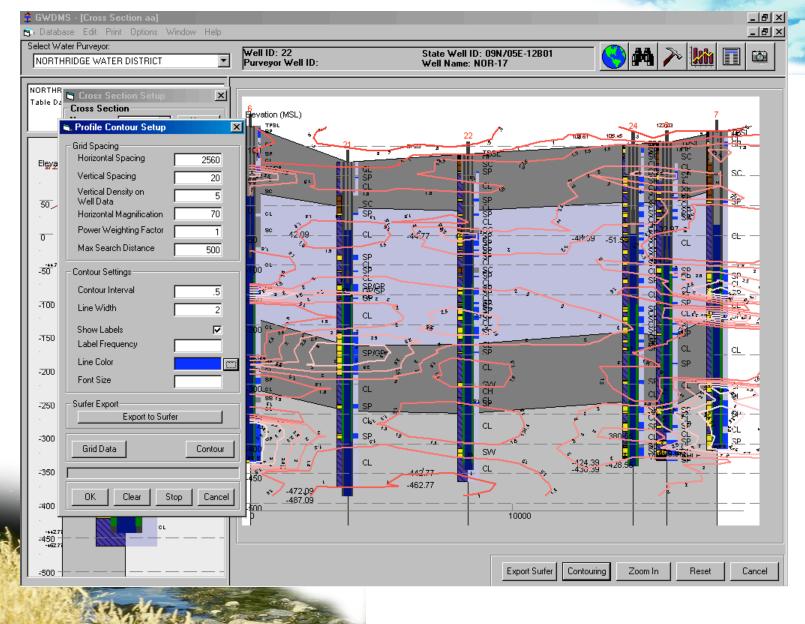
Storage	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	AnnuAvera
IN	1.34	1.32	0.93	0.25	0.46	0.42	0.38	0.41	0.43	0.43	0.44	0.62
OUT	7.44	1.93	1.97	2.73	0.45	1.68	1.03	0.93	1.25	0.73	0.82	1.91
Change	6.10	0.61	1.03	2.49	(0.01)	1.26	0.65	0.52	0.81	0.30	0.38	1.29

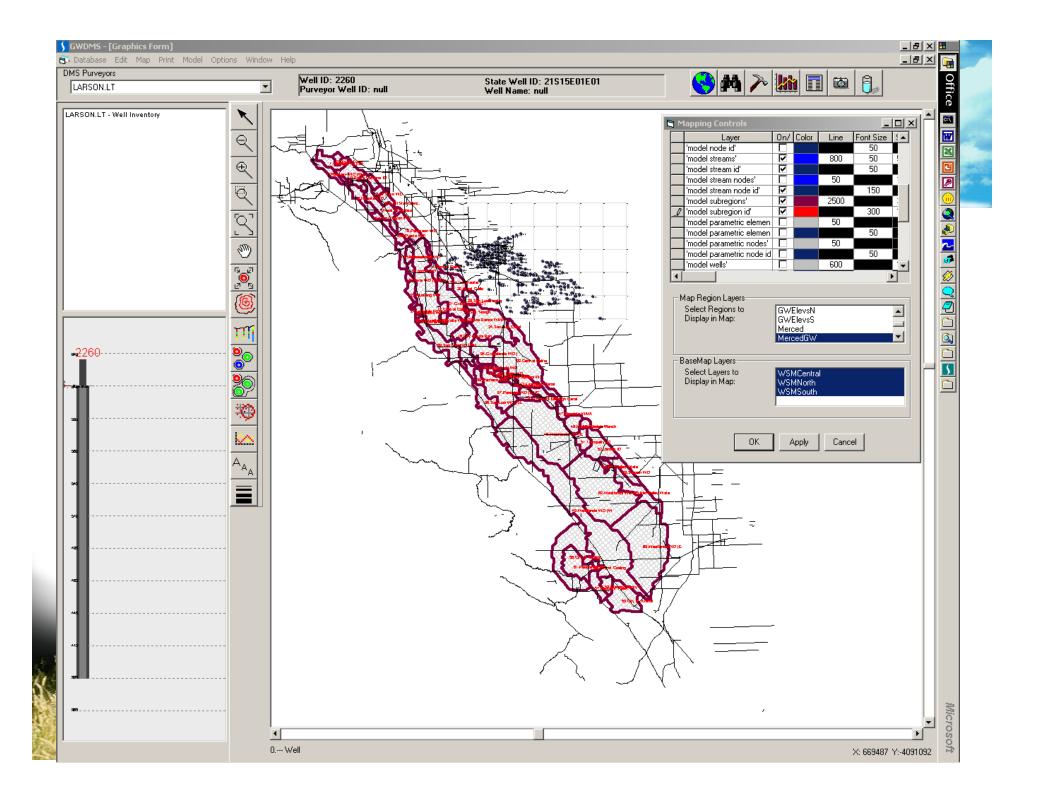
Soil Budget	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	AnnuAvera
Agricultural Area (1000 Acres)	4.1	3.1	3.6	5.9	14.2	10.6	14.3	14.4	14.7	14.7	14.7	10.39
Precipitation	0.61	0.58	0.82	1.51	0.80	1.02	1.11	0.94	1.68	0.86	0.80	0.98
Runoff	0.23	0.16	0.25	0.44	0.10	0.19	0.15	0.16	0.45	0.07	0.12	0.21
Prime Applied Water	12.46	17.11	14.37	9.98	3.69	5.06	3.79	3.45	3.38	3.23	3.42	7.27
Reused Water	6.81	10.56	8.52	5.41	0.31	1.42	0.34	0.24	0.43	0.24	0.20	3.14
Return Flow	5.80	10.21	7.81	4.15	0.08	0.38	0.08	0.06	0.11	0.06	0.05	2.62
Actual ET	4.10	4.42	4.30	4.12	3.21	3.69	3.18	3.03	2.80	2.82	2.84	3.50

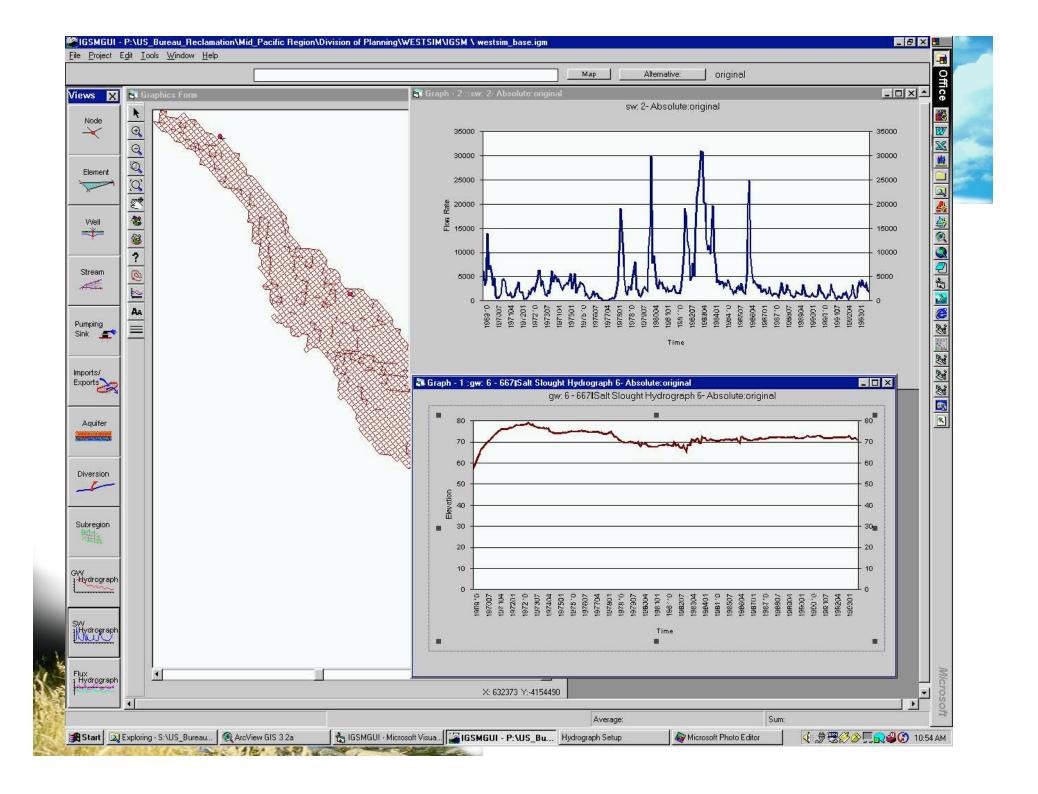

A FEAR A PROPERTY A REAL

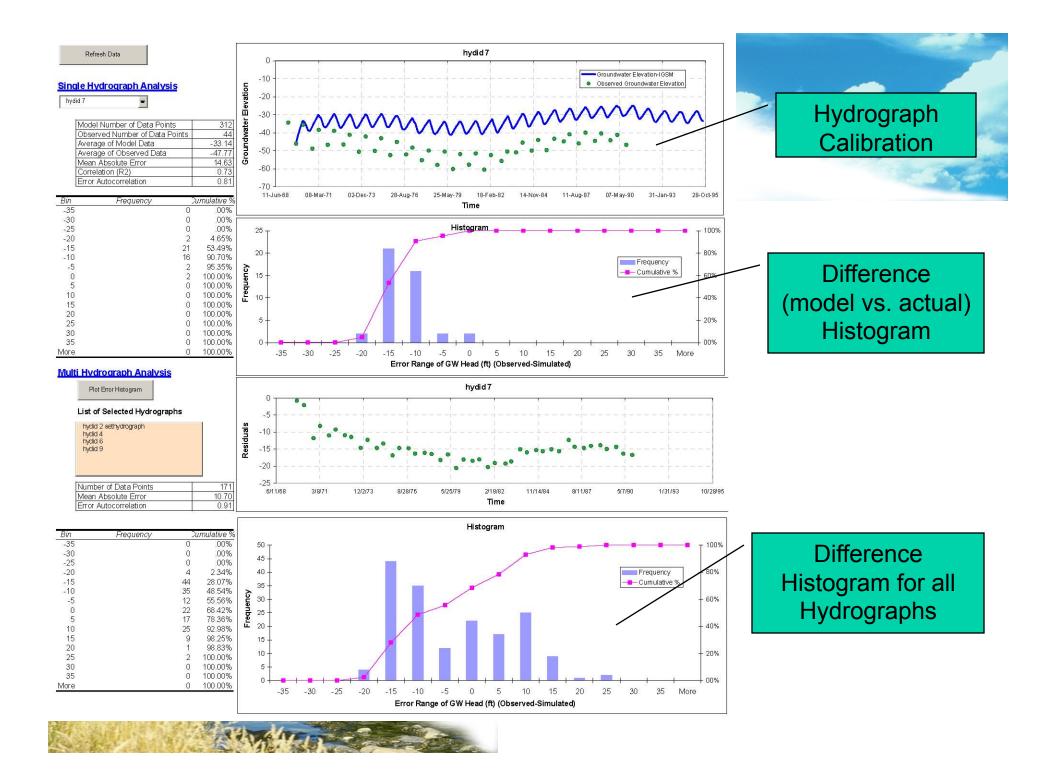

SHEDTOOL

- Graphical User Interface
- Data Storage and Security
- Well Construction Data
- Well Location and Siting Constraints
- Long-term Monitoring
 - Extraction Volumes
 - Water Elevations
 - Water Quality
- Aquifer Characterization


Well Data




LITHOLOGY PROFILES



CONTOURING AQUIFER CHARACTERISTICS

Related Efforts

- SJR Water Quality Module (Reclamation, 2004)
- CALSIM III (Reclamation/DWR, 2008)
- SJR Restoration Program (Reclamation, 2008)
- MERCEDSIM (LBNL)

- The calibration of the water balance and groundwater system was not completed when work was suspended in December 2005
- Initial calibration parameters were defined and well and stream hydrograph locations were preliminarily identified
- Still a source of data for related analysis and modeling efforts

- Nigel W.T. Quinn, PhD, PE
 - Lawrence Berkeley National Lab
 - Email: nwquinn@lbl.gov

