HydroGeoSphere – San Joaquín Valley Project (HGS-SJV)

George Matanga, Mary Kang, Jeff Randall, Don DeMarco California Central Valley Groundwater Modeling Workshop July 11, 2008

BUREAU OF RECLAMAT

Challenges in Water Resources Facing California

Water Supply Reliability

Water Quality Concerns

Ecosystem Health

HydroGeoSphere: Fully-Integrated Numerical Model

- Collaboratively developed by the University of Waterloo, Université Laval, USBR, and HGL
- Comprehensive, fullyintegrated, physicallybased, and distributed numerical model
- Integrated with geospatial tools for process simulation and visualization

HydroGeoSphere: Conceptualization

Project Objective

 To test the effectiveness of subtiming and subgridding numerical techniques in facilitating HydroGeoSphere (HGS) application to large river basins over long simulation periods.

HydroGeoSphere: Subgridding

HydroGeoSphere: Subgridding

HydroGeoSphere: Subgridding

Node Connection To linearize

HydroGeoSphere: Subtiming

Fast Temporal Change (ie, Surface Water Flow)

Requires small time step

Concept

 Localized time-step refinement applied to highly transient processes

Benefit

 Improves computational efficiency by focusing increase temporal resolution only where required

Slow Temporal Change (ie, Subsurface Water <u>Flow)</u>

Requires large time step

SJV Model Specifications: Model Domain

 Contains all of the San Joaquin Valley (SJV) and the northern portion of the Tulare Basin
Follows surface water (SW) and subsurface water (SSW) divides
Downstream of major dams

SJV/Tulare Boundary

Subgridding – Major Rivers

San Joaquin River Zoom

File path: X Drive

Subgridding – Major Rivers

Model Mesh Comparison – Finite Element

v Elements

- Dimension: 0.12km² or roughly 350m x 350m
- **v** Per Layer: 144,368
- Model Layers: 11
- Total Elements: 1,588,048

Nodes

- **v** Per Surface: 72,495
- Model Surfaces: 12 + 1
- Total Nodes: 869,940 + 72,495

Preliminary Modeling Results

 Head output at the end of the December stress period (i.e. Zone 13).

 General trends indicate subsurface water flow trending towards the Bay Delta region

