HydroGeoSphere-Management (HGS-M) System

Mary Kang, Dua Guvanasen, Kirk Nelson California Central Valley Groundwater Modeling Workshop July 11, 2008

UNIVERSITY OF

Waterloo

Celebrating 20 Years of Providing Environmental and Engineering Services Worldwide

Outline

Background Project Objective Broader Modeling Goals General Design Considerations Application Strategies Formulation Linkage methodologies HydroGeoSphere-Management System Next Steps

Project Objective

- To provide a tool that facilitates conjunctive and dynamic simulation of hydrologic processes and operation of multi-reservoir systems
 - Provide capability to assess issues in an integrated and optimal manner under changing climatic conditions with various water management scenarios

General Design Considerations

- Maintain an open architecture to facilitate future additions and upgrades
 - Linkage to various water-allocation (optimization) models/programs
 - Adaptability to future versions and new features in HydroGeoSphere and various water-allocation models/programs
 - Takes advantage of latest advances in computing resources (e.g. distributed computing environments)

Outline

Background
 Formulation

 System representation
 Solution strategies

 Linkage methodologies
 HydroGeoSphere-Management System
 Next Steps

Considerations for Formulation

What are the decisions that need to be made?
What information is required to make these decisions?
What are the objectives and constraints?
Is the resulting problem linear or nonlinear?

System Representation Options

Network-based

Geospatial

File path: O:\Projects\07_10_GSA002-024\Administrative\h_Meetings \Teleconferences\2008 06 23 w-DWR

Solution Strategies

Solution strategy governed predominantly by formulation

Selected solution strategies:

- Linear Programming Algorithms
- Mixed Integer Programming Algorithms
- Dynamic Programming Algorithms
- Nonlinear Algorithms

- Gradient-Based Methods
- Heuristic Methods

Translation / Linkage to Optimization Solver

For linear problems, linear reponse theory is typically used
 A collection of relationships between variables
 Determined by examining responses to individual stresses
 Decision Coefficient Matrix
 For nonlinear problems, can assume approximately linear for a short period of time

Outline

Background Formulation Linkage methodologies Key considerations Integrated versus process-specific representation Nonlinearities Static versus dynamic Existing linkage methodologies HydroGeoSphere-Management System Next Steps

Representation of Hydrologic / Transport Systems

Process-specific representation of physical processes

Lacks physical representation of the interactions between processes

File path: O:\Projects\07 10 GSA002-024\Administrative\h Meetings econferences\2008 06 23 w-DWR

11

Representation of Hydrologic / Transport Systems

Integrated representation of all physical processes

File path: O:\Projects\07_10_GSA002-024\Administrative\h_Meetings \Teleconferences\2008_06_23 w-DWR

12

Treatment of Nonlinearities

 "Base-case" conditions will change over time in transient problems

→ Dynamic Decision Coefficient Matrix (DDCM)

 Coefficients in decision coefficient matrix updated at every decision time period

Static Versus Dynamic

econferences\2008 06 23 w-DWR

 Statistical versus physically-based representation of hydrologic / transport systems

WRIMS STATIC Evapotranspiration Vadose Zone Seepage Baseflow **HydroGeoSphere** File path: O:\Projects\07 10 GSA002-024\Administrative\h Meetings 14

Static Versus Dynamic

 Statistical versus physically-based representation of hydrologic / transport systems

DYNAMIC **WRIMS** Evapotranspiration Vadose Zone Seepage Baseflow **HydroGeoSphere**

File path: O:\Projects\07_10_GSA002-024\Administrative\h_Meetings \Teleconferences\2008 06 23 w-DWR 15

Outline

Background
 Formulation
 Linkage methodologies
 HydroGeoSphere-Management System
 Next Steps

HydroGeoSphere-Management System

HGS-M: HydroGeoSphere-Management (HydroGeoSphere-M or HGS-M) system Linkage between HGS and the Water Resources Integrated Modeling System (WRIMS) (and other water allocation models) Components: **v**HGS-MI (HydroGeoSphere-Management Interface) **VHGS VHGSCompile** WRIMS (and other water allocation models)

Proposed HGS-M Schematic

Proposed HGS Schematic

Proposed HGSCompile Schematic

\Teleconferences\2008 06 23 w-DWR

Proposed WRIMS Schematic

Next Steps

Code Modifications

- Based on:
 - Schematic of HGS-M
 - Schematic of HGS-M components
 - Mathematical programming formulation
- Considerations:
 - Interface design
 - Programming platform
- Verification and Validation
 - **v** Data
 - Scenarios

References

- 1. DWR/BOR, 2001. A Memorandum Report on the Application of CALSIM II Model At 2020 Level-of-Development
- 2. Draper et al., 2004. CalSim: Generalized Model for Reservoir System Analysis. *Journal of Water Resources Planning and Management*. Vol. 130, No. 6, 480-489.
- **B.** Labadie, J., 2004. Optimal Operation of Multireservoir Systems: Stateof-the-Art Review. *Journal of Water Resources Planning and Management.* Vol. 130, No. 2, 93-111.
- 4. 2000. CALSIM Water Resources Simulation Model Manual Draft Documentation
- 5. Federal Remediation Technologies Roundtable Remediation Optimization
 - http://www.frtr.gov/optimization/simulation/transport/codesmethod.htm
- 6. Ilich, N., 2008. Shortcomings of linear programming in optimizing river basin allocation

