Development of a Groundwater-Surface Water Model for the Tule Basin, California

Thomas Harter Nels Ruud, Alec Naugle Gui Marques, Jay Lund, Marion Jenkins

> ThHarter@ucdavis.edu http://groundwater.ucdavis.edu

> > Land, Air, and Water Resources



**University of California, Davis** 

#### **Central Valley Watershed**



## **Project Area Location**

### **Tulare County**



Tule Groundwater Basin ~ 2,300 km<sup>2</sup>

nia, Davis, 2008

#### Irrigation, Water, and Municipal Districts in Study Area



### **Friant Division Contractors in Study Area**

| District              | Class 1            | Class 2       | Total              |
|-----------------------|--------------------|---------------|--------------------|
| Delano-Earlimart ID   | 108,800            | 74,500        | 183,300            |
| Lewis Creek WD        | N/A<br>(1,450)     | N/A<br>(none) | N/A<br>(1,450)     |
| Lindmore ID           | 33,000             | 22,000        | 55,000             |
| Lindsay-Strathmore ID | 27,500<br>(30,000) | none          | 27,500<br>(30,000) |
| Lower Tule River ID   | 61,200             | 238,000       | 299,200            |
| Porterville ID        | 16,000             | 30,000        | 46,000             |
| Saucelito ID          | 21,200             | 32,800        | 54,000             |
| Teapot Dome WD        | 7,500              | none          | 7,500              |
| Terra Bella ID        | 29,000             | none          | 29,000             |

# **Key Issues**

- Quantity of water delivered under renewed contracts
- Water transfers
- Tiered water pricing
- Water conservation measures
- Allocating water to fish and wildlife
- Groundwater Overdraft



# **Project Objectives**

- Develop a conjunctive use groundwater-surface water model for the Tule Groundwater Basin area.
- Create a comprehensive, user-friendly database of the project area hydrology and hydrogeology using GIS
- Develop and assess the response of the groundwater basin to several future conjunctive use management alternatives

### Water in California's Central Valley



## Interaction of Surface Water Supply, Land-Atmosphere and Unsaturated Zone (LAIUZ), and Groundwater Flow Models

#### Land-Atmosphere Interface and Surface Water Supply Model: Unsaturated Zone (LAIUZ) Model: surface water evap. landuse / demands surface water channels delivery soil root zone deep vadose zone seepage recharge unconfined aquifer Groundwater Flow Model: aquitard confined aquifer



## Surface Water Conveyance Network



Friant-Kern Canal Flow-stns

Campbell-Morelan Frazier Creek Hubbs-Miner Lewis Creek Lower Deer Creek Lower Port SI Lower Tule River Lower White Rive Middle Deer Middle Tule Pioneer Poplar Porter SI Ditch Upper Deer Upper Port SI Upper Tule Upper White Vandalia Woods-Central

#### **Channel Network Implementation**



#### **Handling Seepage and Evaporation**

#### Relationship between District Diversions and District Deliveries



#### Surface Water Deliveries (1970-95): Input



#### Surface Water Deliveries (1970-95): Output



### **Annual Channel Seepage from the Tule River**



### **Annual Seepage from the Deer Creek**



### **Annual Seepage from the White River**







# Major Crop Types / Landuse Areas





# **Details of Landuse Coverage**



## LAIUZ: Model Components for Monthly Mass Balance



### **Recharge and Pumpage Modeling Approach**



# Lineal (Stream) vs. Diffuse Recharge



## **Project Area Hydrologic Budget**



# Average Recharge [mm/yr], 1970 - 2000



### Average Pumping [ft/yr], 1970 - 2000



### **Annual Net Aquifer Recharge**



### **Delano-Earlimart Irrigation District**

irrigated acreage (Tulare Co. only): 45K



#### **Lower Tule River Irrigation District**

irrigated acreage: 82K



### **Pixley Irrigation District**

irrigated acreage: 52K



### **Terra Bella Irrigation District**

irrigated acreage: 11K



## **Observed vs. Computed Net Budget**



 $\ensuremath{\mathbb{C}}$  Harter, University of California, Davis, 2008

### measured groundwater storage change minus calculated water budget (avg. 1970 - 1986)







### Major Geomorphic Units and Spatial Pattern of Water Level Observation Wellbores



University of California, Davis, 2008

### Distribution of Wells (for Calibration) by District



# **K** Calibration Concept Models

#### unstructured



#### regional geology-based



#### specific yield-regression



#### soil map K-regression



ornia, Davis, 2008

# **Typical Target Head Distribution**



# **Calibration Residuals [cm]**



Every district has sources and demands.



# **Economics Driven**

- Each district has an agricultural production model of water use.
- A district's sources of water have different economic costs.
- FredSim allocates water to maximize agricultural profits.
- Link to groundwater model: exchange between groundwater "boxes"

# **FredSim Results**

#### • Results from FredSim include:

- Flows to each district from each source for each year in the model simulation period.
- Reservoir and groundwater levels for each year in the model simulation period.
- Economic costs and benefits to farmers of changes in water allocations and operations.
- Prediction: Higher surface water costs lead to increased groundwater pumping / overdraft

### Conclusion

- demonstrate interaction between surface water supply <u>vs</u>. groundwater level
- better understanding of groundwater dynamics
- Estimates of temporal & spatial recharge distribution
- Estimates of temporal & spatial pumping distribution
- planning tool for conjunctive management "whatif" scenarios ( => Fredsim project by Dr. Lund)
- educational/planning resource

# http://groundwater.ucdavis.edu