The California Central Valley Groundwater-Surface Water Simulation Model

Surface Water Processes

CWEMF C2VSim Workshop January 23, 2013

Charles Brush

Modeling Support Branch, Bay-Delta Office California Department of Water Resources, Sacramento, CA

Outline

IWFM Surface Water Process

Stream Reach Budget

IWFM Small-Stream Watersheds Process

Small Watersheds Budget

C2VSim Results

IWFM Surface Water Process

Simulated Annual Water Budget

Average Flows for water years 2000-2009 [Million Acre-Feet/Year]

IWFM

Se -

53

Stream Flow and Stream-Aquifer Interaction

- Assumption of zero storage at a stream node in computing stream flows; i.e. total inflow equals total outflow
- Fully coupled stream and groundwater conservation equations
- Simultaneous solution of stream and groundwater equations results in the computation of stream-aquifer interaction

Stream Flow

Assumption of zero storage at a stream node

$$Q_s - Q_{sin} + Q_{sout} = 0$$

 $Q_s = stream flow, (L^3/T)$

- Q_{sin} = inflows into stream (flow from upstream nodes, return flow, rainfall runoff, tributary inflows, tile drain, lake outflow, bypass, user specified flows), (L³/T)
- Q_{sout}= outflows from stream (diversions, bypass flows, streamaquifer interaction), (L³/T)
- Assumption requires simulation time step to be large enough for stream flow to travel from upstream to downstream in a single time step

Stream-Groundwater Interaction

$$Q_{sint} = C_s \left[max(h_s, h_b) - max(h, h_b) \right] ; C_s = \frac{K_s}{d_s} LW$$

 Q_{sint} = stream-aquifer interaction, (L³/T)

- h = groundwater head, (L)
- h_s = stream surface elevation, (L)
- h_b = stream bottom elevation, (L)
- K_s = stream bed hydraulic conductivity, (L/T)
- d_s = stream bed thickness, (L)
 - = length of stream segment, (L)
- W = channel width, (L)

Stream Diversions

- Used to meet agricultural and urban water demands
- User-specified fractions of diversion become recoverable (recharge to groundwater) and nonrecoverable (evaporation) losses
- May be used to simulate spreading basins (100% recoverable and nonrecoverable losses)

Lake-Groundwater Interaction

- One or more elements can be specified as lake elements
- Lakes are fully coupled with groundwater
- Lake storage is a function of precipitation, evaporation, inflows, lakeaquifer interaction and lake outflow

 $\frac{\Delta S_{lk}}{\Delta t} - Q_{lkin} + Q_{lkout} = 0$

- ΔS_{lk} = change in lake storage, (L³)
- Q_{lkin} = lake inflow (precipitation, inflows from streams and upstream lakes), (L³/T)

Q_{lkout} =lake outflow (evaporation, lake spill, lake-aquifer interaction), (L³/T)

Lake-Groundwater Interaction

 $Q_{lkint} = C_{lk} \left[max(h_{lk}, h_{blk}) - max(h, h_{blk}) \right] ; \quad C_{lk} = \frac{K_{lk}}{d_{lk}} A_{lk}$

 Q_{lkint} = lake-aquifer interaction, (L³/T)

- h = groundwater head, (L)
- h_{lk} = lake surface elevation, (L)
- h_{blk} = lake bottom elevation, (L)
- K_{lk} = lake bed hydraulic conductivity, (L/T)
- d_{lk} = lake bed thickness, (L)
- A_{lk} = area of lake, (L)

- Lake outflow is computed when lake surface elevation exceeds maximum lake elevation
- Lake outflow can be directed to a stream node or a downstream lake

Inflows

acramento Rive

Monthly at 38 locations

Cow Creek

Inflows File

C	VALUE			DESCRIPTION
-	41 43560000.0 1 0			<pre>/ NCOLSTRM / FACTSTRM (TAF/mon> ft^3/mon) / NSPSTRM / NFQSTRM / DSSFL</pre>
L				^
c				
C IRS	т			
C				
205	5	/ 1:	205	Sacramento River
211	L	/ 2:	211	Cow Creek
220)	/ 3:	220	Battle Creek
218	3	/ 4:	218	Cottonwood Creek
225	5	/ 5:	225	Paynes and Sevenmile Creek
233	}	/ 6:	233	Antelope Creek Group
243	}	/ 7:	243	Mill Creek
237		/ 8:	237	Elder Creek
248	}	/ 9:	248	Thomes Creek
256		/10:	256	Deer Creek Group
263	}	/11:	263	Stony Creek
269)	/12:	269	Big Chico Creek
283	5	/13:	283	Butte and Chico Creek
341		/14:	341	Feather River
349		/15:	349	Yuba River
357		/16:	357	Bear River
390)	/1/:	390	Cache Creek
374		/18:	374	American River
400		/19:	400	Putan Creek Consumps River
107)	/20:	100	Dry Creek
172		/21:	172	Dry Creek
161)	/22:	161	Colevenes River
101		/23:	101	Cataveras River
146)	/24:	146	Stanislaus Kiver

Inflows File

Sacramento River

C																
C ITST	ASTRM(1) ASTRM	(2) AST	RM(3)												
С		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
C																
10/31/1921	_24:00	232.000	7.500	15.700	9.000	0.560	6.592	6.900	0.500	0.197	10.534	1.700	1.890	11.904	99.241	20.
11/30/1921	_24:00	237.000	22.500	19.500	17.900	1.030	6.180	6.400	1.000	1.077	11.626	1.000	2.640	11.904	97.051	27.0
12/31/1921	_24:00	335.000	49.600	29.100	52.600	6.320	18.128	18.700	4.000	18.539	34.061	9.000	9.760	30.876	190.489	119
01/31/1922	_24:00	302.000	78.000	36.500	89.500	6.040	13.802	14.200	3.000	24.810	25.997	8.000	8.250	25.420	184.647	121
02/28/1922	_24:00	547.000	71.200	33.400	96.700	20.690	37.904	39.100	8.000	24.025	71.651	52.000	25.780	62.124	390.538	338
03/31/1922	_24:00	610.000	56.800	33.700	84.800	13.190	27.810	28.600	7.000	19.774	52.453	27.050	18.980	47.988	447.937	274
04/30/1922	_24:00	780.000	40.300	33.000	56.800	8.340	31.312	32.400	8.000	58.475	59.296	37.250	19.820	52.452	827.107	414
05/31/1922	_24:00	629.000	26.700	33.000	33.900	3.970	43.054	44.500	4.000	40.348	81.553	25.950	18.130	71.796	1469.55	4
06/30/1922	_24:00	338.000	9.000	24.100	15.900	0.460	24.720	25.600	1.000	4.760	46.939	6.900	6.190	43.772	659.901	662
07/31/1922	_24:00	240.000	2.400	16.300	6.200	0.050	8.446	8.800	0.500	1.119	15.923	6.200	2.210	17.980	165.586	94.
08/31/1922	_24:00	214.000	1.600	13.000	4.700	0.040	5.974	6.100	0.500	0.118	11.411	5.200	1.670	11.532	106.558	31.
09/30/1922	_24:00	202.000	2.700	12.600	5.200	0.080	5.356	5.400	0.500	0.009	9.947	4.500	1.510	9.548	92.886	17.4
10/31/1922	_24:00	232.000	6.100	12.700	7.300	0.410	7.210	6.200	0.500	1.119	10.370	2.050	1.790	10.912	101.455	22.
11/30/1922	_24:00	255.000	18.200	15.800	14.500	2.640	13.802	11.800	1.000	5.111	18.353	10.700	4.420	19.096	141.858	55.
12/31/1922	_24:00	336.000	40.100	23.500	42.600	15.350	44.702	38.300	4.000	28.856	63.273	36.000	19.500	56.792	383.129	308
01/31/1923	_24:00	399.000	63.100	29.500	72.400	7.940	24.308	20.700	4.000	28.383	34.265	32.000	11.070	33.976	310.205	172
02/28/1923	_24:00	312.000	57.600	27.000	78.200	3.170	13.802	11.800	3.000	15.395	19.379	15.000	5.780	21.452	201.433	113
03/31/1923	_24:00	333.000	46.000	27.300	68.600	1.810	13.802	11.800	3.000	10.207	19.546	9.050	5.840	21.452	303.257	144
04/30/1923	_24:00	590.000	32.600	26.700	45.900	1.970	29.664	25.300	5.000	35.369	41.644	27.750	8.420	39.308	563.802	407
05/31/1923	_24:00	357.000	21.600	26.700	27.400	0.310	14.832	12.600	2.000	11.228	20.700	6.550	2.510	23.932	385.773	411
06/30/1923	_24:00	267.000	7.300	19.500	12.800	0.110	9.064	7.800	1.000	5.724	11.023	5.500	1.260	16.492	181.547	200
07/31/1923	_24:00	214.000	1.900	13.100	5.100	0.030	6.180	5.200	0.500	0.563	8.594	5.850	1.030	10.416	115.966	72.4
08/31/1923	_24:00	194.000	1.300	10.500	3.800	0.020	5.768	4.900	0.500	0.384	8.155	4.850	1.050	7.812	104.959	27.9
09/30/1923	_24:00	196.000	2.200	10.200	4.200	0.060	6.592	5.700	0.500	0.248	8.524	3.800	1.140	8.556	94.433	23.
10/31/1923	_24:00	222.000	2.400	5.000	2.900	0.470	4.120	7.500	0.500	0.726	8.870	1.000	1.110	10.540	105.144	30.0
11/30/1923	_24:00	206.000	7.200	6.200	5.700	1.030	3.502	6.400	0.500	0.976	8.218	1.000	1.450	9.052	96.516	21.
12/31/1923	_24:00	218.000	15.800	9.300	16.800	1.360	4.120	7.200	1.000	2.349	9.299	3.000	1.790	10.540	92.723	34.0
01/31/1924	_24:00	226.000	24.900	11.700	28.600	1.800	4.326	7.900	2.000	3.671	10.084	3.000	2.110	12.028	100.655	40.
02/29/1924	_24:00	334.000	22.700	10.700	30.900	3.960	11.124	20.000	2.000	17.969	25.494	10.000	5.330	28.396	257.347	110
03/31/1924	_24:00	230.000	18.100	10.800	27.100	1.240	6.798	12.300	2.000	3.007	15.729	1.350	3.070	18.476	96.167	51.
04/30/1924	_24:00	210.000	12.900	10.500	18.100	0.460	5.562	9.900	1.000	2.696	12.535	2.400	1.740	16.988	127.696	95.
05/31/1924	_24:00	184.000	8.500	10.500	10.800	0.140	3.296	6.200	1.000	1.119	7.880	3.700	0.910	10.292	76.614	49.3
06/30/1924	_24:00	169.000	2.900	7.700	5.100	0.060	2.884	5.100	0.500	0.084	6.529	2.000	0.520	6.448	55.000	11.
07/31/1924	_24:00	171.000	0.800	5.200	2.000	0.040	2.884	5.100	0.500	0.000	6.461	0.000	0.490	6.200	52.381	9.6

acramento Rive

Monthly at 246 locations

Surface Water Diversions

Diversions and imports

- "Diversions" means water taken from a simulated river node, subject to availability
- "Imports" generally means water taken from a source that is not modeled
 - Reservoirs outside the model area serving canals
 - Reservoirs inside the model area that are not modeled (for example Black Butte and Camanche)
 - Complex delivery systems (California Aqueduct)

Surface Water Imports

Friant-Kern Canal

- Release water from Millerton Lake to canal
- Deliveries to contractors along canal
- Wasteway flows to river beds for delivery to down-stream customers
- Flows to Kern River

Surface Water Imports

- Friant-Kern Canal deliveries simulated as:
 - Imports to individual subregions
 - Separate diversions for
 - Agricultural
 - Urban
 - Refuges
 - Spreading (Aquifer Storage)
 - Diversions to some districts via river channels
 - Inflow "FKC Wasteway Deliveries to Tule River"
 - Diversion from river

Surface Water Exports & Imports

California Aqueduct

- Pump water from Delta to San Luis Reservoir (outside model area)
- Release water from San Luis Reservoir for use inside model area
- Release water from San Luis Reservoir for use outside model area
- Simulated as exports and imports
 - Too complex to incorporate in a regional model

Diversion Specification

Diversion source and destination

C N	IRDV;	Number of	surface	water d	iversion	s inclu	ded in th	ne model	L.						1
с с v	ALUE			DESCRI	PTION										
C	46			/ NRDV											
c															
<pre>C The following lists the specifications for each surface water diversion (skip if no diversions are modeled, i.e. NRDV = 0) C C ID ; Surface water diversion identification number C IRDV ; Stream node from where the diversion takes place. Enter '0' if the stream node is outside the model area. C ICDVMAX; Maximum diversion amount - this number corresponds to the appropriate data column in the diversion data file Unit 26 C FDVMAX ; Fraction of data value specified in column ICDVMAX to be used as maximum diversion amount C ICOLRL ; Recoverable loss - this number corresponds to the appropriate data column in the diversion data file Unit 26 C FRACRL ; Relative proportion of the data value that is specified by ICOLRL to be used as recoverable loss C ICOLNL ; Non-recoverable loss - this number corresponds to the appropriate data column in the diversion data file Unit 26 C FRACRL ; Relative proportion of the data value that is specified by ICOLRL to be used as non-recoverable loss C ICOLNL ; Number of sub-regions to which diverted surface water is delivered</pre>															
C I C F C I C I C I C I C I C Des C ID	RGDL COLDL RACDL CFSIRIG CADJ CCADJ CCIPTIO IRDV	; Sub-regia ; Delivery ; Relative ; Fraction irrigat ; Supply a specific n ICDVMAN	on numbe to sub- proport of the ion frac djustmen cations	r to whi region I ion of the delivery tion dat t specified data file ICOLRL	ch the d RGDL - t he data that is a file U ication e Unit 1 	elivery his num value t used f nit 27 - this 2 	is made ber corre hat is sp or irrige (remainin number co L FRACNI	(1NI esponds pecified ation pu ng amoun prrespon	DLDV) to the a d by ICOI irposes - nt will H nds to th / IRGDI	appropria LDL to be - this nu be used t ne approp	te data co used as o mber corro o supply riate dato DL FRACDL	olumn ir delivery esponds the user a columr ICFSIE	the di to sub to the specif in the IG	iversion data file Unit 26 oregion IRGDL appropriate data column in the fied urban demand) e supply adjustment ICADJ	
C C C Wh	niskeyto	wn and Sha:	sta impo	orts for s	SR1 Ag									Source River Noc	le
1 C C	0	265	1	1	0.03	1	0.01	1	1	1	0.96	23	1	(0 = import)	
C Wh	iskeyto	wn and Sha	sta impo	rts for	SR1 M&I									Allocation to losse	22
2 C C	0	265	1	2	0.03	2	0.01	1	1	2	0.96	22	2	and delivery	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
C Sa C	crament	o River to	Bella V	ista con	duit for	SR1 Ag								Dectination	
3 C C – –	206	265	1	3	0.03	3	0.02	1	1	3	0.95	23	3	- subregion	
C Sa C	crament	o River to	Bella V	ista con	duit for	SR1 M&	I								~
4 C	206	265	1	4	0.03	4	0.01	1	1	4	0.96	22	4	Land use $(23 = A)$	J,
C – – C Sa	crament	 o River to	Bella V		 duit for	Export								22 = urban)	

Diversion Specification

Recharge area for recoverable losses

C					
c					
ĕ		De eter			
C		Rechai	rge zone for	each diversion	point
С	(Ski	ip if no diver	rsions are be	eing modeled, i.	e. NRDV = 0)
С					
6	TD ·	Pecharge zor	ne identific:	tion number (*N	lote* Pecharge zone TD's should match river diversion TD numbers)
2	10 ,	Recharge 201	ne identifica	icion number ("n	
C	NERELS;	Total number	r of elements	s through which	recharge occurs
C	IERELS;	Element numb	ber through w	which recharge o	ccurs
С	FERELS:	Relative pro	oportion of t	the recoverable	loss to be applied to
c		element 1	TEDETS as not	charge	
		erement i	IEREDS as Ier	Sharge	
C					
- P					
c	ID	NERELS	IERELS	FERELS	
C.					
Ĕ					
-					
C	Whiskeyto	own and Shasta	a imports for	r SR1 Ag	
С					
	1	1	12	1	
	-	-		-	
-					
С	Whiskeyto	own and Shasta	a imports for	r SR1 M&I	
С					
	2	1	12	1	
~	-	-		-	
C					
С	Sacrament	to River to Be	ella Vista co	onduit for SR1 A	d
С					
	3	2	2	1	
	-	-	-	-	
			3	1	
С					
С	Sacrament	to River to Be	ella Vista co	onduit for SR1 M	Ial
с					
-	4	2	2	1	
	7	2	2	-	
			3	1	
С					
с	Sacrament	to River to Be	ella Vista co	onduit for Expor	t
c					
- U	-		-		
	5	2	5	1	
			8	1	
<u>_</u>					
	Sagramont	o Diver Kegui	ight to Red R	luff for SD1 Ng	
2	Sacrament	O KIVEL VESWI	ICK CO KEU D.	LUII IOF SKI AG	
C					
	6	9	5	1	
			8	1	
			19	1	
			10	±	
			14	1	
			15	1	
			19	1	
			20	1	
			20	1	
			26	1	
			27	1	
~					
2					•
С	Sacrament	to Kiver Keswi	ick to ked B.	LUII IOT SEI M&I	
С					
	7	9	5	1	

Bypasses

- Flood control
- Kings River bifurcation
- ASR programs

Bypass Specification

Source and destination river nodes

C Bypass Configuration Specifications C C C NDIVS; Number of bypasses C FACTX; Conversion factor for DIVX - It is used to convert only the spatial component of the unit; C TUNITX; Time unit of stream flow. This should be one of the units recognized by HEC-DSS that are listed in the Main Control File. C FACTY; Conversion factor for DIVY - It is used to convert only the spatial component of the unit; C TUNITX; Time unit of diversion. This should be one of the units recognized by HEC-DSS that are listed in the Main Control File. VALUE DESCRIPTION 12 / NDIVS 60 / FACTX values in CFS * 60 -> CFM / TUNITX 1min 60 / FACTY values in CFS * 60 -> CFM 1min / TUNITY ID ; Bypass identification number С IA ; Stream node number where bypass is exported C IDIVT; Stream node number where bypass is imported С IDIVC; If positive, IDIVC is the column number in the diversion data file Unit 26 for bypass flow If negative, IDIVC is the number of points in the diversion rating table C C DIVRL; Fraction of the diversion assigned as recoverable loss C DIVNL; Fraction of the diversion assigned as non-recoverable loss C DIVX ; Stream flow available at stream node IA; [L^3/T] C DIVY ; Diversion amount corresponding to DIVX; [L^3/T] ID IA IDIVT IDIVC DIVRL DIVNL DIVX DIVY (this rating table should follow if IDIVC < 0) C Bypass 1 - Moulton Weir spill to Butte Basin 280 290 251 ο. C Bypass 2 - Colusa Weir spill to Butte Basin 2 282 291 252 0. 0. C Bypass 3 - Tisdale Weir near Grimes Ο. 3 297 337 253 0. C Bypass 4 - Freemont Weir spill to Yolo Bypass 396 254 ο. 367 0. Bypass 5 - Sacramento Weir spill to Yolo Bypass 5 372 397 255 0. 0. _ _ _ _ _ _ _ _ _ _ _ _ _

Bypass Specification

Recharge area for recoverable losses

C=
C
C Seepage locations for bypass canals
c
The following information aposition the neckarge goes for each hymnog
The following information specifies the fechalge zone for each bypass.
C (Skip if no bypass is being modeled, i.e. NDIVS = 0)
C
C ID ; Recharge zone identification number (*Note* Recharge zone ID's should match bypass ID numbers)
C NERELS: Total number of elements through which recharge occurs
C IEDELS, Element number through thigh restance equival
c TEREIS, ETERETC Humber chrough which recharge occurs
C (If bypass to lake elements, provide negative sequential lake number, as in the LAKE input data file)
C FERELS; Relative proportion of the recoverable loss to be applied to element IERELS as recharge.
C
C
C ID NERELS IERELS FERELS
C
C Bypass 1 - Moulton Weir spill to Butte Basin
C All losses go outside the model (losses = 0)
C
C
C Bypass 2 - Colusa Weir spill to Butte Basin
C All losses go outside the model (losses = 0)
c
c
C Bypass 3 - Tisdale Weir to Yolo Bypass
C All losses go outside the model (losses = 0)
C
3 0 0 0
C Bypass 4 - Freemont Weir to Yolo Bypass
C All losses go outside the model (losses = 0)
c
4 0 0 0
C Bypass 5 - Sacramento Weir to Yolo Bypass
C All losses go outside the model (losses = 0)
c
5 0 0 0
C Bypass 6 - Knights Landing Ridge Cut flood flow to Yolo Bypass
C All losses go outside the model (losses = 0)
C. C
6 0 0 0
C Bypass 7 - Kings River to Fresno Slough
C All losses go outside the model (losses = 0)
C Bypass 8 - End of Kaweah River to be spread in Kaweah River Fan as recharge
C Aquifer Storage Program - no observed flow past this stream node

River Parameters

C***	*******	**********	********	*******	******	***	*****	******	****************
С			STREAM BED	PARAMETERS					
С									
С	The fo	ollowing list	ts the para	meters to mo	odel str	eam	з.		
С	*Note*	* Skip data i	input if no	streams are	e modele	d			
С									
С	FACTK ;	Conversion	n factor fo	r stream bed	d conduc	tiv	ity -	 It is used to co 	nvert only the spatial component of the unit;
С	TUNITK;	Time unit	of conduct	ivity. This	s should	be	one	of the units	
С		recognize	ed by HEC-D	SS that are	listed	in	the M	Main Control File.	
С	FACTL ;	Conversion	n factor fo	r stream bed	i thickn	ess	and	wetted perimeter	
С	IR ;	Stream noo	ie number						
С	CSTRM ;	Hydraulic	conductivi	ty of stream	n bed; [L/T]		
С	DSTRM ;	Thickness	of stream	bed; [L]					
С	WETPR ;	Wetted per	rimeter; [L]					
С									
C						-			
С	VALUE		DESCRIPT	ION					
C									-
	1.0		/ FACTK						
	1mon		/ TUNITK						
	1.0		/ FACTL		•				
c									-
С	IR	CSTRM	DSTRM	WETPR	Riv	er	Name	(Optional)	
c									-
	1	3.91109000	1.	300.0	REACH	1	-	KERN RIVER	
	2	/.04310000	1.	300.0					
	3	4.27314000	1.	300.0					
	4	14.6494000	1.	300.0					
	5	3.44887000	1.	300.0					
	6	2.01865000	1.	300.0					
	7	1.63871000	1.	300.0					
	8	2.23515000	1.	300.0					
	9	.920359000	1.	300.0					
	10	1.84849000	1.	420.0	REACH	6	-	TULE RIVER	
	11	14.1967000	1.	420.0					
	12	2.54948000	1.	420.0					
	13	1.44002000	1.	420.0					
	14	.928433000	1.	420.0					
	15	1.47745000	1.	420.0					
	16	1.23984000	1.	420.0					
	17	1.04805000	1.	420.0					
	18	6.85300E-4	1.	420.0	REACH	6a	-	TULE RIVER(ZERC))
	19	8.68300E-4	1.	420.0					
	20	8.39200E-4	1.	420.0					
	21	8.15800E-4	1.	420.0					
	22	8.14200E-4	1.	420.0					
	23	.673012000	1.	475.0	REACH	2	-	KINGS RIVER	
	24	.542923000	1.	475.0					
	25	.478602000	1.	475.0					
	26	.376210000	1.	475.0					
	27	.337160000	1.	475.0					
	28	.473797000	1.	475.0					
	29	.644172000	1.	475.0					

Lake Parameters

C**	******	*******	
C		LAKE PARAMETERS	
С			
С	The par	ameters required to model lakes are listed below.	
C	*Note*	Skip data input if no lakes are modeled	
C			
c	FACTK :	Conversion factor for lake bed hydraulic conductivity	
C	TUNITK :	Time unit of hydraulic conductivity. This should be one of the units recognized by HEC-DSS that are listed in the Main Contro	L File
C	FACTL :	Lonversion factor for thickness of lake bed	
C		Lake number	
Ċ	CLAKE :	Hydraulic conductivity of the lake bea; [L/I]	
c c	TCHIMAY	Interness of the take bed; [L]	
c c	ICHLMAX;	Column of max-lake file that gives maximum lake elevation	
с с			
c	VALUE	DESCRIPTION	
с			
	1.0	/ FACTK	
	1mon	/ TUNITK	
	1.0	/ FACTL	
C			
С	IL	CLAKE DLAKE ICHLMAX Lake Name (Optional)	
C			
	1	20.0 1.00000 1 Buena Vista Lake Bed	
· · ·		20.0 I.00000 Z IUTARE BEA	
1	*******		

Stream Reach Budget

Column	Flow	08/31/2004	Process
Upstream Inflow (+)	IN	2,944	
Downstream Outflow (-)	OUT	781	
Tributary Inflow (+)	IN	0	SWS
Tile Drain (+)	IN	0	GW
Runoff (+)	IN	0	LS
Return Flow (+)	IN	2	LS
Gain from Groundwater (+)	+/-	-1,593	GW
Gain from Lake (+)	+/-	0	
Diversion (-)	OUT	0	LS
By-pass Flow (-)	OUT	573	
Discrepancy (=)		0.00	
Diversion Shortage		0	

Lake Budget

Column	Flow	08/31/2004	Process
Beginning Storage (+)		63,418	
Ending Storage (-)		51,052	
Flow from Upstream Lake (+)	IN	0	
Flow from By-passes (+)	IN	799	
Precipitation (+)	IN	0	
Gain from Groundwater (+)	+/-	1,939	GW
Lake Evaporation (-)	OUT	15,104	
Lake Outflow (-)	OUT	0	
Discrepancy (=)		0.30	
Lake Surface Elevation (FEET)		185	

Diversions & Imports

Surface Water Destinations

Surface Water Destinations

1922-1929

2000-2009

IWFM Small Watersheds

- Calculate monthly ungaged surface water inflows and groundwater inflows
- Areas and flow channels from CalWater watershed coverage
- Grouped with nearest boundary node
- Resulted in 210 small-stream watersheds
- Approximately 5% of surface water inflow

Eliminate the gaged watershed

These are the ungaged watersheds

Overland flow paths

Small Watersheds

- Boundary Conditions for Small Watershed Inflow Computation
- C NTWB ; Number of small watersheds where inflows will be computed and specified as boundary flux
- C FACTA ; Conversion factor for small watershed drainage area
- C FACTQ ; Conversion factor for maximum recharge rate It is used to convert only the spatial component of the unit;
- : TUNIT ; Time unit of max. recharge rate. This should be one of the units recognized by HEC-DSS that are listed in the Main Control File.

 ; 	VALUE	DESCRIPTION	
	210 43560.0 43560.0 1mon	<pre>/ NTWB / FACTA (ac> ft^2) / FACTQ (ac.ft/mon> cu.ft./mon) / TUNIT</pre>	

ID ; Small watershed identification number

c c

С

IWBS ; Watershed group number corresponding to the watershed parameter groups specified in the parameter data file Unit 7

AREAS ; Drainage area of the small watershed; [L^2]

IWBTS ; Stream node that receives the surface runoff from the small watershed

NWB ; Number of groundwater nodes that receive the base flow and the percolation of surface flow from the small watershed

IWB ; Groundwater node number small watershed baseflow is routed through

QMAXWB; Maximum recharge rate for each node; [L^3/T]

(Enter -1 to specify which groundwater node(s) receive baseflow from the small watersheds)

ID	IWBS	AREAS	IWBTS	1	NWB	IWB	QMAXWB
 1	1	48887	434		3	1371	-1
						1369	200.0000
	_					1370	200.0000
2	2	001//	101		9	1369	200.0000
						1370	200.0000
3	3	22140	434		3	1360	-1
	0	22110	101			1361	200 0000
						1362	200.0000
4	4	20783	434		3	1349	-1
-	-	20,00				1350	200.0000
						1351	200.0000
5	5	9992	434		3	1339	-1
-					-	1340	200.0000
						1341	200.0000
6	6	14459	434		4	1329	-1
	_					1330	200.0000
						1340	200.0000
						1341	200.0000
7	7	11979	434		5	1318	-1
						1319	200.0000
						1320	200.0000
						1321	200.0000
						1341	200.0000
8	8	13309	440		3	1305	-1

Small Watershed Parameters

C***	*******	*******	**************************************	********	*******	********	******	*******	*****											
c			SMALL	SIRLAM W	VALEKONE	D DATA														
с	The follo	wing list	s the sm	nall wate	ershed p	arameters	that a	re used :	in the c	omputati	on of rund	off from t	he trib	outary w	atershe	eds ou	itside	the mode	el bound	dary.
С					_															
c	NSW ; FACTI :	Number of	: small w	vatershed	i groups	denth and	around	water th	reshold :	value										
c	FACIL ;	Conversio	n factor	for hvd	iraulic (conductiv	itv	iwater th	Lesnoru	Varue										
С	TUNITK;	Time unit	of hydr	raulic co	nductiv	ity. Thi	.s shoul	d be one	of the	units re	cognized k	by HEC-DSS	5 that a	are list	ed in t	the Ma	ain Con	trol Fi	le.	
С	FACTT ;	Conversio	on factor	for red	cession (coefficie	ents		_											
c	TUNITT;	Time unit	; of rece	ession co	efficie	nts. Thi	s shoul	d be one.	of the	units re	cognized k	by HEC-DSS	5 that a	are list	ed in t	the Ma	ain Con	trol Fi	le.	
c																				
С	VALUE		DESCR	RIPTION																
C																				
	210		/ NSW	V ~тт																
	1.00000		/ FAC	.1L TK																
	1dav		/ TUN	VITK																
	1.00000		/ FAC	TT																
	1mon		/ TUN	TTI																
C																				
c	IS ; TENS ;	Small Wat																		
č	FRNS :	Rainfall station number associated with the small watershed																		
c	FLDCAS;	Field cap	acity; [[L/L]																
С	TPOROS;	Total por	cosity; [[L/L]																
С	CROOT ;	Root zone	e depth c	of native	e vegeta	tion in t	he smal	l waters	ned; [L]											
С	SOILKS;	Hydraulic	conduct	civity of	the ro	ot zone;	[L/T]													
c	CN ;	(Peference	ber for	small wa	atershed	area														
c	GWSOS :	Threshold	l value c	of ground	dwater de	epth abov	ve which	groundw	ater											
С		storag	re of sma	all water	shed co	ntributes	to sur	face run	off; [L]											
С	SWKS ;	Recession	coeffic	cient for	surfac	e outflow	; [1/T]													
С	GWKS ;	Recession	n coeffic	cient for	base f	low; [1/T	:]				_									
C IS	IRNS	FRNS	FLDCAS	TPOROS	CROOT	SOILKS	CN	GWSOS	SWKS	GWKS										
1	1393	1	0.109	0.235	6.2	6.43	65.0	9.99	0.1000	0.0104	4									
2	1394	1	0.073	0.236	6.2	2.75	72.0	9.99	0.1000	0.0104	4									
3	1395	1	0.006	0.139	4.0	7.51	97.7	10.00	0.1000	0.0100	0									
5	1390	1	0.022	0.150	4.0	7.82	97.7	10.00	0.1000	0.0100	0									
6	1398	1	0.102	0.231	4.0	7.29	97.7	10.00	0.1000	0.0100	0									
7	1399	1	0.153	0.273	4.0	4.20	94.0	10.00	0.1000	0.0100	0									
8	1400	1	0.202	0.309	4.0	2.47	84.1	10.00	0.1000	0.0100	0									
9	1401	1	0.214	0.333	4.0	2.83	86.6	10.00	0.1000	0.0100	0									
10	1402	1	0.250	0.383	4.0	3.03	94.0	10.00	0.1000	0.0100	0									
11	1403	1	0.217	0.351	4.0	4.45	94.0	10.00	0.1000	0.0100	0									
12	1404	1	0.283	0.427	4.0	2.72	92.8	10.00	0.1000	0.0100	0									
 	1 4 6 5				~ ~			TO OC												

Small Watershed Budget

Column	Flow	08/31/2004 Process
Total SW Outflow	OUT	6,049
GW Base Outflow	OUT	90,386
Base Flow + Surface Percolation	OUT	90,456
Net Surface Outflow to Streams	OUT	5,979

Small-Watershed Inflows

Small Watershed Inflows

END

