The California Central Valley Groundwater-Surface Water Simulation Model

C2VSim Overview

CWEMF C2VSim Workshop

Charles Brush

Modeling Support Branch, Bay-Delta Office California Department of Water Resources, Sacramento, CA

Outline

Background and Development History

C2VSim Framework

Coarse-Grid and Fine-Grid Versions

Future Directions

Derived from the CVGSM model

- WY 1922-1980 Boyle & JM Montgomery (1990)
- WY 1981-1998 CH₂M Hill for CVPIA PEIS

Steady modification

- DWR IWFM/C2VSim development began in 2000
- IWFM process and solver improvements
- C2VSim data sets reviewed and refined
- C2VSim input data extended through WY 2009

Calibration

- PEST parameter estimation program
- Three phases: Regional, Local, Nodal
- Calibration Period: WY 1973-2003 in phases 1 & 2, 1922-2004 in phase 3

Release

- C2VSim 3.02-CG released December 2012, updated June 2013
- C2VSim 3.02-FG expected in 2014

C2VSim Applications

- CalSim 3 groundwater component
- Integrated Regional Water Management Plans
- Stream-groundwater flows
- Climate change assessments
- Groundwater storage investigations
- Planning studies
- Ecosystem enhancement scenarios
- Infrastructure improvements
- Impacts of operations on Delta flows

C2VSim Versions

C2VSim CG 3.02 (R374): Release Version

- Current version, released June 2013
- Water Years 1922-2009, monthly time step
- IWFM version 3.02

C2VSim FG 3.02 (R374): Draft Version

- Based on C2VSim 3.02 CG
- Refine rivers, inflows, land use
- Upgrade to match CG version before release
- Expected release in 2014

Planned Improvements

- C2VSim 3.02 CG/FG: Extend to WY 2011 or 2012
- C2VSim 4 FG: Element-level land use, crop and diversion data

R375: September 2013

Make the supply adjustment flags easier to use

R376: November 2013

- Modify irrigation schedules in subregions 15-17
- Modify curve numbers in small watersheds 103-114
- Add M&I imports from Placer Co Water Agency
- Make irrigation fraction flags easier to use

R377: April 2014

- Remove ASR at end of the Tule & Kaweah Rivers
- Limit ASR on the Kern River Flood Channel to 1,000 cfs

R378: April 2014

 Modify basement altitude between Merced and Los Banos to match base of fresh water

C2VSim Coarse Grid

"C2VSim CG-3.02"

DWR Web Site

- Model files
- Documetation
- C2VSim ArcGIS GUI
- IWFM Application
- IWFM Tools

Support

- Training: IWFM and C2VSim workshops will be offered through CWEMF
- Technical support: Email and telephone

A Google search for "C2VSim" brings up this page

C2VSim Portal

Additional Tools tab on C2VSim page

Interactive Web Site

- Tutorial Files
- Project Files
- Collaboration
- Message Board
- User/Password for additional access

C2VSim Coarse-Grid

"C2VSim CG-3.02"

Finite Element Grid

- 3 Layers or 9 Layers
- -1393 Nodes & 1392 Elements

Surface Water System

- 75 River Reaches, 2 Lakes
- 243 Surface Water Diversions
- -38 Inflows, 11 Bypasses
- 210 Small-Stream Watersheds

Land Use Process

- 21 Subregions (DSAs)
- 4 Land Use Types

Simulation periods

- -10/1921-9/2009 (88 yrs)
- runs in 3-6 min

IWFM version 3.02

Pre-processor

- Nodal coordinates
- Nodes form elements
- Vertical aquifer stratigraphy
- Lakes
- River nodes
- River reaches & flow network
- Element properties
- Pumping wells
- Assign elements to subregions

Nodes

X-Y Grid

- UTM 10N
- X = Easting
- Y = Northing

Convert to FT

- FACT = 3.2808

C,	******	*******	*********
С		Ground	dwater Node Specifications
С			
С	ND;	Number of ground	dwater nodes
С	FACT;	Conversion factor	or for nodal coordinates
C-			
	VALUE		DESCRIPTION
C-			
	1393		/ND
	3.2808		/FACT
_			
_			*******
С			undwater Node Locations
	The fo	ollowing lists the	e node number and $x \in y$ coordinate of
C			
		Groundwater node	
С		Coordinates of g	roundwater node location; [L]
_			 rdinates
_	ID		Y
Ĭ			4496226
	_	555618.8	
		561555.5	
	4	568374.3	4498058
	5	553186.9	4492706
	6	558611.6	4492797
	7	566864.0	4493337
	8	548989.2	4487360
	9	553710.4	4488293

4488069

Elements

Finite Element Mesh

- 4 nodes = quadrilateral
- 3 nodes = triangle

1392 elements

-	C**	******	******	******	******	******
-1	c		Eler	ment Configura	tion Data	
	С					
	С	NE;	Number of elem	ments within t	he model doma	in
	C					
E		VALUE		DESCR		
	C					
		1392		/NE		
쩅						
2	_	******	******	******	******	*******
	С					
4	C		a listed below the model domai	-	l elements an	a correspo
	c	within	the model domai	ın.		
Δ.	c	TF.	Element numbe			
	c		Nodes corresp		h element	
	c	IDE,	_	is zero for		r elements
	c		1,000 100(1)	10 1010 101	arr vrrangaro	
	С	Element		Correspondi	ng Nodes	
	С	IE	IDE (1)	IDE(2)	IDE (3)	IDE (4)
	C					
		1	1	8	9	5
		2	1	5	6	2
		3	2	6	7	3
		4	3	7	4	0
7		5	5	9	10	6
		6	6	10	11	7
		7	8	14	15	9
		8	9	15	16	10
		9	10	16	17 18	11 12
-		10 11	11 13	17 19	20	14
		11	13	13	20	17

Stratigraphy

At each node:

Land Surface Elevation

For each layer

- Aquiclude thickness
- Aquifer thickness

	C*************************************										
C	Stratigraphy Specification Data										
C											
0.0.0.0	NL;	Number of layers to be modeled									
	FACT;	Conversion factor for stratigraphic data									
C											
С	VALUE		DESCRIPTION								
C											
E	3			/NI							
	1			/FF	CT						
C											
_											
									_		
~	Node	Elevation	Laye	E #T	ray	TT (4)	raye	W(E)			
~	10	Elevation ELV	W (1)	W (2)	w(3)	W (±)	W(3)	w (0)			
C	1								_		
	2	695	0	245	0	100	0	100			
	3	705	0	273	0	100	0	100			
	3 4	732	0	200	0	100	0	100			
	5	463	0	89	0 0 0	133		134			
	6		0	186	0	134	0				
	7	590			0	134	0	133			
		705	0	334	0	133 100	0	134			
	8	613	0	213				100			
	9	455	0	133	0	133	0	133			
	10 11	554	0	296	0	1/0	0	179 144			
		460	0	100	0	143	0				
	12	800	0	326	0	134	0	134			
	13	1056	•	000	0		0	100			
	14	795	0	345	0 0 0	100	0 0 0	100			
	15	418	0	144	0	163	0	164			
	16	496	0	317	0	235		236			
	17	499	0	340		248	0	249			
	18	777	0	9/4	0	107	0	166			
	19 20	885	0	305	0	100	0	130			
	21	818	0	314	0	100	0	134			
		599	0	420	0	412	0	198			
	22 23	403	0	420	0	413		413			
	23	457	0	401	0 0	319	0	318			
	25	635 631	0	411 122	0	186 133	0	185			
	26	622	0	257	0	164	0	133 165			
	26 27		0		0		•				
	28	669 580	0	536	0	317		318			
	28	372	0	808	0	654		653 334			
	30	372 594	0	247	0	212	0	213			
			0	20	0		0				
	31	613			0	120		133			
	32	735	0	226	0	133	0	133			
	33	726	0	313	0	140	0	139			
	34	521	0	246	0	215	0	216			
	35	436	0	346	0	351	Ü	351			

C2VSim Aquifer Cross Section

C2VSim Aquifer Thicknesses

Base of Fresh Water

Three dimensional view (looking north) of the base of fresh water surface

River Nodes and Reaches

Listed by Reach Nodes linked to mesh

í	С	NRH;	Number o	f stream	reaches mode	led
ì	С	NR;	Number o	f stream	nodes modele	d
1	С	NRTB;	Number o	f data po	ints in stre	am rating t
	С					
٦	C					
	С	VALUE			DESCRIPT	ION
	C					
		75			/ NRH	
ä		449			/ NR	
8		5			/ NRTE	1
	C					
	.c					
	c	REAC	H 1 -	KERN RIVE	R	
i	c	Reach	Upstream	n Downstr	eam Outflow	1
ś	·C		Node	Node	Node	
q	с с	ID	IBUR	IBDR	IDWN	
	C					
ij	E	1	1	9	434	
Ц	C					
H	С	Stream	Groundw	ater Sub	region	
	С	node	node	num	ber	
	C	IRV	IGW	IRG	ST	
	C					
		1	1304	21		
Ô		2	1315	21		
à		3	1317	21		
ġ		4	1326	21		
		5	1325	21		
		6	1333	21		
٦		7	1332	21		
		8	1331	21		
	_	9	1342	21		
	Ć	DEAC		INGS RIVE		
	-				k eam Outflow	,
	2	Reacii	Node	Node		
	c c	ID	IBUR	IBDR	IDWN	
ı	.c					
Ē		2	23	32	33	
	c					
	c	Stream	Groundw	ater Sub	region	

River Nodes and Reaches

Rating table for each node at the end of the file

```
/ FACTQ
                                        (cfs --> cu.ft./min; since "second" is not recognized
The following lists a stream rating table for each of the stream nodes
*Note* In order to define a specified stream depth, enter all HRTB values
         as equal to the specified depth value
      Stream node number
BOTR; Stream bottom elevation relative to a common datum [L]
QRTB; Flow rate at stream depth HRTB [L^3/T]
        elevation depth
           420.0
                               100.00
                              1000.75
                              6000.00
                             20000.00
                              100.00
                              1000.75
                             20000.00
                              100.00
                             1000.75
                              6000.00
                             20000.00
                              100.00
                              6000.00
                             20000.00
                               100.00
                              1000.75
```

River Nodes and Reaches

Rating table for each node at the end of the file

Groups of Elements

Outflow = River Node #

```
Lake Configuration Data
NLAKE ; Number of lakes that are being modeled
NTELAKE; Total number of lake elements
ID ; Sequential number for the lakes
INLAKE: Next downstream lake number
          0 : if flow from lake leaves the modeled area
        -nd : if flow from lake goes to stream node nd
         nd : if flow from lake goes to the downstream lake, nd
NELAKE; Number of lake elements where lake lies
IELAKE; Element in which the lake is located
           Next Lake Elem per Lake Element
                         NELAKE
 Buena Vista Lake
                                       1352
                                       1353
                                       1363
                                       1109
                                       1110
                                       1136
                                       1137
                                       1138
```


- Precipitation data column
- River node receiving drainage
- Subregion
- Soil type

$$A = 1$$
 $B = 2$

C = 3 D = 4

	C C The following lists the hydrologic characteristics of each element: C								
	C IE; Element number								
	C IRNE; Rainfall station assigned to the element IE								
c	· ·								
c									
	C FRNE; Factor to convert rainfall at the assigned rainfall station to								
С		all at the e							
С	ISTE; Str	eam node	to which	surface wa	ater from	element II	E drains to		
С							the model area)		
	IRGE; Su	bregion n	umber to	which eler	ment IE be	longs to			
С	ISGE; Ele	ement sub	-group nu	mber to w	hich elem	ent IE bel	ongs to		
С	ISOILE; H	ydrologic s	soil prope	rty of the o	element (i	e. A=1, B=	2, C=3, D=4)		
С	(Refe	erence for	A-D soil ty	pes: USD/	4, 1985)				
С									
C-									
С			Rain	Drain	Sub-	Sub-	Soil		
С		station		node	region		type		
С		IRNE	FRNE	ISTE	IRGE	ISGE	ISOILE		
C-				207			2.100		
	1	1	1	207	1	1	3.100		
	2	2	1	206 206	1	1	3.000 3.000		
	4	3 4	1	206	1	1	3.000		
	5	5	1	207	1	1	3.850		
	6	6	1	207	1	1	3.150		
	7	7	1	208	1	1	3.150		
	8	8	1	208	1	1	4.000		
	9	9	1	208	1	1	4.000		
	10	10	1	213	1	1	2.200		
	11	11	1	209	1	1	3.000		
	12	12	1	209	1	1	3.100		
	13	13	1	209	1	1	3.000		
	14	14	1	209	1	1	3.900		
	15	15	1	210	1	1	3.850		
	16	16	1	214	1	1	2.200		
	17	17	1	216	1	1	3.000		
	18	18	1	216	1	1	3.000		
	19	19	1	216	1	1	3.200		
	20	20	1	216	1	1	2 900		

X-Y Location

- UTM 10N
- -X = Easting
- Y = Northing

Convert to FT

- FACT = 3.2808

Well Properties

- RWELL = 1
- Screen Top
- Screen Bottom

```
List of modeled wells and their corresponding parameters
NWELL ; Number of wells modeled
FACTCX; Conversion factor for well coordinates
FACTRW; Conversion factor for well diameter
FACTLT; Conversion factor for perforation depths
3.2808
            Well identification number
XWELL, YWELL; X-Y coordinates for each well; (L)
            Well diameter; (L)
PERFT, PERFB; Elevations of the top and bottom perforations; (L)
                  YWELL RWELL PERFTOP PERFBOT
                                               / Anderson
                                             / Cottonwood
                                             / Redding A (Downtown)
                               450 400
                                              / Redding B (Enterprise)
                                               / Corning
                               50 -100
                                               / Hamilton City
                               50 -100
                                               / Los Molinos
                                               / Red Bluff
                                               / Tehama
                               50 -100
                               0 -200
                                               / Williams
                               50 -150
                                               / Willows
                                               / Biggs
                                50 -150
                                               / Chico
                                               / Gridlev
                               0 -100
                                               / Live Oak
                                               / Marvsville
                                               / Sutter
                               -50 -150
                                               / Wheatland
                               -50
                                    -200
                                               / Yuba City
      619438 4333059
     609719 4266809
                              -100
                                     -300
                                               / Davis
                              -100
```


Calibrated Parameters

Aquifer nodes

- Conductivity
- Storage
- Subsidence

River nodes

Conductance

Unsaturated Zone

- Porosity
- Conductivity

Soil properties

- Field capacity
- Porosity
- Recharge factor
- Curve Numbers

Small Watersheds

- Field capacity
- Porosity
- Conductivity
- Discharge threshold
- Recession coefficients

Calibration with PEST

Calibration with PPEST

C2VSim Calibration

- Calibrate parameter values at each model node and layer
- Using computers at the USDOE National Energy Research Scientific Computing Center (NERSC)
 - Carver
 - IBM iDataPlex
 - 3,200 CPU cores, 34 Tflop/s

• Comparison:

	PPs	Compter	Run Time
R300	137	15 PCs	1 week
R326	394	15 PCs	3 weeks
R346	1393	15 PCs	16 weeks
R346	1393	NERSC	2 weeks

Calibration Observations

Groundwater Heads

56,947 observations at 1,145 wells

Vertical Head Difference

3,017 observations at 121 well pairs

Surface Water Flow

5,636 observations at 21 locations

Stream-Groundwater Flows

Average annual rates on 24 reaches

Parameter Sensitivity

Parameter Sensitivity

Hydraulic Conductivity

Layer 1 Layer 2

Storage Parameters

Layer 1 Layer 2

River-Bed Conductance

Model Performance

Observation Type	No. Observation Sites	No. Observations	Range
Groundwater heads	1,378	62,981	1,252
Vert. Groundwater Head Difference	163	3,017	698
River Flows	22	5,636	6,561,453
River-Groundwater Flows	33	33	38,117
Subsidence	24	3,700	6.2
TOTAL	1,620	75,367	

Observation Type	Root Mean Squared Error	Residual	RMSE Range	<u>Residual</u> Range
Groundwater heads	65.4	2.14	0.052	0.002
Vert. Groundwater Head Difference	96.2	-13.3	0.138	-0.019
River Flows	145,591	-13,720	0.022	-0.002
River-Groundwater Flows	8,875	3,620	0.233	0.095
Subsidence	17.4	-11.5	2.81	-1.86

Units: Heads and subsidence in feet, flows in acre-feet

Head and flow observations from October 1975 to September 2003, Subsidence observations from September 1957 to May 2004

Groundwater Heads

Surface Water Flows

Process-level output tables have a complete water balance, and can be used to produce budget figures

Groundwater budgets can also be produced for 'zones' of one to many elements

Water Table Altitude

Produced from IWFM's TecPlot® output files

IWFM

IWFM Water Balance Diagram

C2VSim Model

- Land Surface Processes
 - Land and Water Use Budget
 - Root Zone Budget
- Groundwater Process
 - Groundwater Budget
 - Z-Budget Budget
- Surface Water Processes
 - Stream Reach Budget
 - Lake Budget
- Small-Streams Watershed Process
 - Small Watershed Budget

END