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Aquatic Nitrogen Cycle
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Use of tracers: can track new and regenerated
production with N15 labeled nitrate and
ammonium measured with mass spectrometry
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San Francisco Estuary

The conventional wisdom for nutrients and primary
productivity by phytoplankton in the San Francisco
estuary Is that:

* Nutrients don’t matter as light is limiting, and
nutrients are always in excess

* The composition of the DIN pool is unimportant
since nitrate and ammonium can be used equally-
worldwide

» Corbula amurensis (Asian clam) invasion was
responsible for the collapse of the primary
productivity in Suisun Bay in 1987



Fishery yield directly related to primary production
Primary production is the foundation of a healthy
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We observed in Suisun in 2000, that spring
blooms happen when NH, is low
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The same relationship occurs with dilutions
of effluent or NH,CI
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High NH, can result in decreased NH, uptake
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NH, concentrations at Suisun Bay calculated from
SRWWTP discharge in different years
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As the discharge increases, the flow needed for 4 umol L (ie blooms) increases)



In Suisun Bay, chlorophyll decreasing
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Nitrate (---) or Ammonium (- - -), uM

40 —

Central Bay Enclosure Experiments
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Chlorophyll accumulation and phytoplankton

productivity in Central Bay enclosures

Nutrient drawdown and chlorophyill
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Required sequence for bloom formation in
SFE

1) Phytoplankton biomass buildup by uptake of
NH, (e.g. from improving irradiance, better
water column stability)

2)NH, concentrations decline to below 4 umol L+

3)Nitrate (NO,) and NH, uptake produce rapid
bloom of chlorophyll



River Transects




Change in contribution of NO; and NH, to total
DIN as go downstream
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Shift from uptake of NO, to NH, uptake system
with low primary productlwty (C uptake)
downstream of WWTP
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Patterns downstream

Sacramento Chlorophyll Suisun Bay
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Spring transects sampled in 2009 and 2010



Sponsored by San Francisco Regional Water Quality Control Board, Karen Taberski



With high NH, concentrations, there was low

chlorophyl
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At the height of the bloom NH, was < 4 pmol L with
high chlorophyll concentrations (~ 30 pg L!); about 20
umol Lt NO; was drawndown
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We calculated that in 2010 there was a decline in
NH, in Sac R near the SR WTP due to increased
flow and a decline in NH, discharge
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SR WTP later explained that they had reduced NH, discharge by 12% due
to changes in treatment practices !



Criteria for phytoplankton to bloom in Suisun Bay
(i.e. chlorophyll > 10 ug L), assuming adequate
light

1)Loading of ammonium must not exceed
capacity of the phytoplankton population to take
it up (or NH, concentration will increase)

2) The Iinflowing concentration of ammonium must
be close to 4 umol L1

3) Flow must be less than the washout rate; I.e.
basin dilution no greater than phytoplankton
growth rate



Simplified basin model for NH, criteria for blooms

NH, input from rivers
1) NH, per day, tons N d-! _—
2) Concentration umol Lt Flow, m°d

Surface area 1.7x108 m?
Volume 9.9x108m?

Loading NH, input from rivers / surface ares

Phytoplankton uptake=VNH, * biomass
as N or chl

NH, outflow=
NH, input from rivers minus
phytoplankton uptake



Comparing NH, loading with phytoplankton
capacity to take up NH,

Range of loadings to Suisun Bay Range of phytoplankton uptake in
(from SacRegional WTP, corrected for Suisun Bay
nitrification) (from Wilkerson et al. 2007)
tons N day?! mmolm-2d-! mmolm-2d-1
5 (ca 1980) 0.53 0.49-1.2
10 1.05
15 (present) 1.58

Loading must be less than phytoplankton uptake capacity
(or NH, concentration will increase)



Comparing basin dilution with phytoplankton
growth rate on NH,

Mean VNH,
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Threshold flows required for 4 umol L-* NH, at
Suisun with different NH, loading (5-15 tons d?)
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NH, in the river at the WTP vs. river flow with
curves showing relationship for different N
loadings with the 4 pmol L' concentration
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Simplified Estuarine N Cycle
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Cutting off phytoplankton access to NO; reduces potential phytoplankton
biomass by 80%



Suisun Bay NH,/NO5 model
to describe NH, and NO4 interactions
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Basic Equations

NH4 uptake,
Michaelis Menten
VNH,;=Vanna"NHL/(NH, +Ks)

NO, uptake,
1)Acceleration kinetics
VNO; = NO,4(i) +A*t
A=4x10"*NO; + 4 x 10
2) Inhibition by NH,,
VN03*eXp-5.59*NH4



Model can be run in 3 modes:
1)Flow set to 0, simulates enclosure experiments

2) Flow set to proportion of volume, simulates a
fully mixed bay

3)Flow set to proportion of volume, inputs are as
surface area integrated values, Simulates fully
mixed bay with phytoplankton productivity
restricted by irradiance



1) Flow set to 0, simulates enclosure experiments

Nutrient Concentration, pmol L
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Central Bay Enclosures
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2) Flow set to proportion of volume, simulates a fully
mixed bay
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2) Flow set to proportion of volume, simulates a fully
mixed bay: two states of biomass accumulation
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3) Flow set to proportion of volume, inputs are as
surface area integrated values, simulates fully mixed bay
with phytoplankton productivity restricted by irradiance
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Nutrient stoichiometric model
With increasing NH, and decrease in PO,, the
phytoplankton and food webs have changed

Pre-1982: Diatom Era

1983-1999: Cryptophyte/Flagellate Era

2000-2005: Cyanobacteria Era
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SMORE salmon model: new project to combine a lot of
models to simulate salmon success from egg to adult

msr’; - River Model (HRSTM)
of salmon! X Bay Model (SELFE-CoSINE)
Ocean Model (ROMS-CoSINE)
-~ Fish Model (DEB) =
M\, RTF

g i J
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The lower trophic model to be used will be CoSINE which will
need to be modified for the estuary and rivers

Carbon, Silicate, Nitrogen Ecosystem Model CoSINE,
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