

"Still Wrong, but Sometimes Useful": Adventures with CALVIN

Jay R. Lund Richard E. Howitt University of California - Davis

http://cee.engr.ucdavis.edu/faculty/lund/CALVIN/

Real work done by

Dr. Mimi Jenkins Dr. Andrew J. Draper Dr. Stacy K. Tanaka Matthew D. Davis Brian J. Van Lienden Brad D. Newlin Melanie Taubert Dr. Tingju Zhu Kristen B. Ward Dr. Inês Ferreira Mark Leu **Matthew Ellis Rachael Hersh-Burdick** Christina Connell

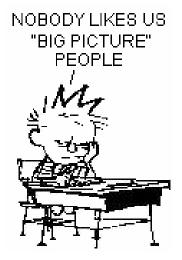
Dr. Josue Medellin Dr. Kenneth W. Kirby **Prof. Manuel Pulido** Dr. Siwa M. Msangi Sarah Null **Randall Ritzema Prof.** Guilherme Marques **Dr. Arnaud Reynaud** Pia M. Grimes **Marcelo** Olivares Jennifer L. Cordua Kaveh Madani

http://cee.engr.ucdavis.edu/faculty/lund/CALVIN/

More Thanks

USACE Hydrologic Engineering Center - Bob Carl, Mike Burnham, Darryl Davis for HEC-PRM optimization code

Agencies who gave us data and helped us better understand it: Dozens of people who went out of their way


Advisory Committee, chaired by Anthony Saracino for their aid in helping us communicate our approach and results

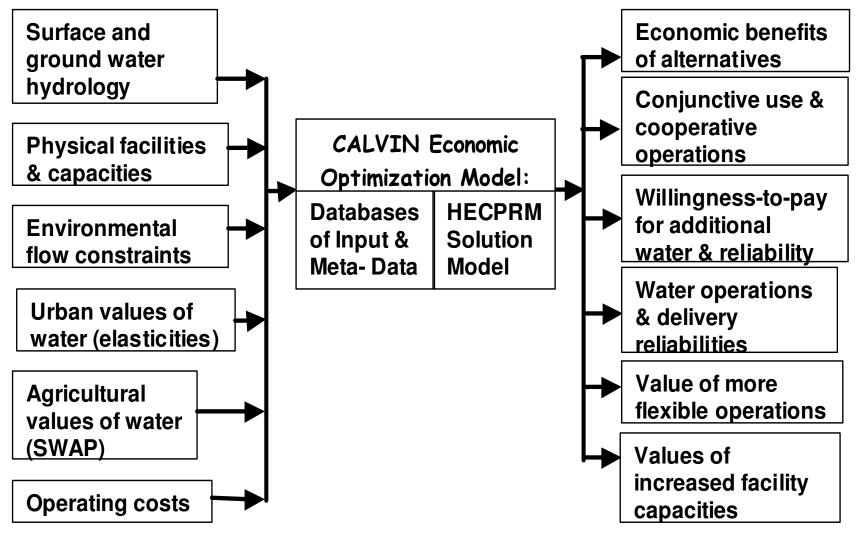
\$till More Thank\$

- Cal. Resources Agency Douglas Wheeler
- Henry Vaux's connections
- CALFED Mark Cowin
- CEC Guido Franco
- **USBR**
- CALEPA Ricardo Martinez
- PPIC
- TNC

What is CALVIN?

- Entire inter-tied California water system
- Surface and groundwater systems
- Supply and demand management options
- Economics-driven engineering optimization model
 - Economic Values for Agricultural, Urban, & Hydropower Uses
 - Flow Constraints for Environmental Uses
- Prescribes monthly system operation over a 72year representative hydrology

Forces quantitative understanding of the system 5


California's Water System

-0C

155 Major surface reservoirsExtensive groundwaterVast conveyance networkVast irrigated acreage36+ million people

Data Flow for the CALVIN Model

Network Flow Optimization

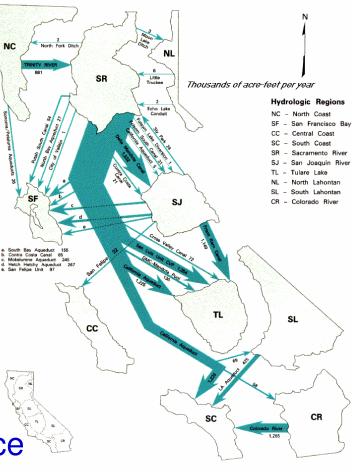
Minimize:

(1) $Z = \Sigma \Sigma c_{ij} X_{ij}$, X_{ij} is flow from node i to node j <u>Subject to</u>:

 $\begin{array}{ll} (2) & \Sigma \; X_{ji} = \Sigma \; a_{ij} \; X_{ij} + b_{j} & \mbox{ for all nodes } j \\ (3) & X_{ij} \leq u_{ij} & \mbox{ for all arcs} \\ (4) & X_{ij} \geq I_{ij} & \mbox{ for all arcs} \end{array}$

 $\begin{array}{l} c_{ij} = economic \ costs \ (ag. \ or \ urban) \\ b_j = external \ inflows \ to \ node \ j \\ a_{ij} = gains/losses \ on \ flows \ in \ arc \\ u_{ij} = upper \ bound \ on \ arc \\ I_{ij} = lower \ bound \ on \ arc \end{array}$

Local & Statewide Activities


Local Activities:

- Groundwater use and recharge
- Surface reservoir operations
- Local water markets and exchanges
- Water use efficiency improvements
- Wastewater reuse
- Desalination

Statewide Activities:

- Inter-regional water conveyance
- Surface reservoir operations
- Water conservation incentives
- Groundwater banking and recharge
- Water market support and conveyance
- Wastewater reuse subsidies

Integrating the mix of responses is important.

Purposes of CALVIN

Economic-engineering optimization of regional and California-wide water supply

User targets:

- Research
- Student education
- Educate California water modeling community:
 - Databases and documentation,
 - Large-scale optimization,
 - Integrated water management,
 - Integrating economics and engineering,
 - Trouble-making?

Applications of CALVIN

- Regional and statewide water markets & values of new facilities (2001)
- Conjunctive use in S. California (2002)
- Restoring Hetch Hetchy (2003)
- Climate warming & adaptation (2003, 2005, now)
- Paleodrought (2005)
- Groundwater overdraft (2006)
- Baja California & Colorado R. Delta (2006 now)
- Delta water supply impacts (2002, 2007- now)
- Sacramento Valley Conjunctive Use (now)

Proof of concept for innovations

Major Innovations

- 1) Integrated modeling of integrated systems
 - Surface and ground water
 - Supply and demand
 - Wide range of water management options
 - Economics, engineering, and hydrology
 - Local, regional, and statewide scales
- 2) Data bases of California's water system
- 3) Planned integrated modeling
- 4) Optimization

Does it work? 2001 Predictions

- 1. Water market transfers
 - IID San Diego transfers (\$800M/yr)
 - Kern–Castaic transfers (~\$100M/yr)
 - Sacramento Valley to South transfers
- 2. CCWD-EBMUD inter-tie
- 3. No major new surface storage
- 4. More conjunctive use development
- 5. CRA conjunctive use fails (2003)

Limitations

- Chapter 5 of 2001 report, on web
- Data problems
- Limits of network flow formulation
- Too smart: perfect hydrologic foresight
- Lack of companion simulation model
- Not finished (interface, data, software, ...)

Big models are never finished ...

- ...unless they stop being used.
- Software and interface (GIS and schematic)
- Data
- Companion simulation model
- Foresight
- Groundwater levels and pumping
- Demand variation with wet years
- More water quality effects

Lesson taught by CALVIN

- 1. Integrated modeling is possible
- 2. Integrated modeling produces more insightful results
- 3. Documentation is possible
- 4. System data bases are possible

Some reflections

Model development worked because:

- We didn't know it could not be done
- Students earnestly made it better
- Nobody took us seriously, politically
- We modeled for insights, not numbers
- Malice of forethought on integrated method, theory, data management and documentation
- Integrated simplicity
- We enjoyed working hard together ¹⁷

Where to go from here?

- It is odd for the Forum to give an award to a 7 year old model.
- Most 7 year old models should be about ready for retirement, and this is in some ways true for CALVIN.
- So we should think about what should come after CALVIN...
- Can do better than CALVIN

Final Thoughts

"All models are wrong, but some are useful." – G.E.P. Box

"They can because they think they can." – Virgil