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Given "capacity infiltration rate"
and ponding time formulas at a
point scale, and laws
of chance for the
distribution of conductivity,
one can derive analytically
the infiltration rate
for a plot or a parcel.

In this derivation it is necessary
to account for runoff from the
ponded surfaces that will cause

"run-on' and thus opportunity
for infiltration in zones where all
the rainfall had infiltrated but
some unfilled capacity still exists.
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Typical (possible) formulae

Ponding time : | ¢, =
r(r-K)
with storage-suction factor:

. hei ~
Sf = (0 - 06;) [kpydhe =(0 - 0;)H py;
0

and capacity infiltration rate:

r 1
—k(t-tp)

i.=K+(r-K)e
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Parcel infiltration rate

Over the ponded fraction
VA
[i.(K,1) f(K)dK

- _0
'pfP = F[Z]

For the entire parcel:

V4
ip ={l- F[ZDr + [i.(K,0) f(K)dK
0

The functional form
of infiltration for

parcel # column




(SPATIAL) DISTRIBUTION
OF CONDUCTIVITY

Density function for K: f(K)
cdf: F (]()

"RULES OF THE GAME"
Scenarios as to the fate of the

excess rain, 1.e. the water that
did not infiltrate.

Instantaneous Removal
(by Microchannels) IRS

K Decrease Downhill KDD
K Increase Downhill KID

Single Huge Uniform
Column SHUC




Comparison of the SHUC and three IRS cases
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Figure 1. Infiltration rates for the SHUC case and three IRS cases




Comparison between the SHUC and the KID case with i0 and k varying
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Figure 2. Infiltration rates for the SHUC case and the KID case when all parameters vary.




CONCLUSIONS

WHICH SCENARIO TO
USE FOR PARCEL
INFILTRATION? A MIX.

fraction fu of the parcel well
drained by microchannels

ip = fuiu +(1_fu)iS
More precise derivations will
not significantly improve the
description of the phenomena as
opposed to knowing better the
fraction drained by

microchannels versus that
subject to run-on.




(Groundwater) Equation. #1

Classical deterministic Boussinesq equation

Sé’g’/ div.[T,(grad.H,)]=

with usual symbols but with the
added subscript r to indicate that
such a subscripted variable 1s
actually a random variable. To
simplify let us only consider the
steady-state case 1n jJust one
dimension and with no recharge or
withdrawal rate  within  the
domain.
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(Groundwater) Equation. #2
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Define: H,.(x)= H(x) + h(x)
H(x) is the mean value of H,.(x).
The expected value of h 1s zero.
Similarly: 7,.(x) = T (x)e?™)

The expected value of 8 is zero.

The random variable @ is defined

by 1ts variance: Jé(x) and

'
covariance: C 00 (x,x ).

Given values and functions.




(Groundwater) Equation. #3
(-
OX

Substitution (with previous definitions) :

8'
0 pcH Fhe
G, P 120
alre o)

St

1
Taking expectation, defining: T A = T L€2

0 OoH é’chg'
T T '
A T )

Problem? One equation and two unknowns:

Hx)and C ”. (X, X))

]=0




(Groundwater) Equation. #4

Premultiply the stochastic equation
!

o
o pcH Fhe

P 120
e o)

' '
by random variable 0 ()C ) and take expectation
leading eventually to:

p oy C, oC

X | ho \ ho \q_
S TaCp g+ () 0+ Ta (- )]1=0

Now this 1s a system of two equations for two

unknowns for all x and x' within the domain of
interest.
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