RECLANATION Managing Water in the West

Sediment Transport during Drawdown of the Copco 1 Reservoir on the Klamath River under Dam Removal Scenarios

Yong G. Lai and Blair P. Greimann Technical Service Center

U.S. Department of the Interior Bureau of Reclamation

Background To perform hydrologic, hydraulic, and sediment transport studies to support the Secretarial **Determination on Klamath Dam Removal and Basin** Restoration

Background

- Two alternatives (2012 to 2061): – "No Action" and "Dam Removal"
- Dam Removal Scenario:
 - JC Boyle, Copco 1, Copco 2, and Iron
 Gate Dams will be removed by
 December 31, 2020. A free flowing river
 will be established by that date.
 - Reservoir drawdown of JC Boyle, Copco
 1, and Iron Gate Dams will begin on
 November 15, 2019 or January 1, 2020.

Scope of this Study

- Reservoir Drawdown Process of Copco 1
- SRH-2D is used: Two-Dimensional flow and sediment transport model
- The channel incision process as a result of the drawdown
- Sediment delivered to the downstream
 RECLAMATIC

SRH-2D Stands for:

Sedimentation and River Hydraulics – 2D modeling

History

- SRH-W version 1 (2006)
- SRH-2D version 2 (2008)
- SRH-2D version 3 (beta)

Current Release: SRH-2D v2 www.usbr.gov/pmts/sediment/model/srh2d

Habitat / Wetland / ReconnectionRestoration Projects

Lateral Variations; Bank/Levee Overtop

In-Stream Structures (Weirs, Dams, Gates, Cofferdams, Levees ...)

Perched or Multiple Channels

Malpasset Dam Break Modeling

Is Dredging Going to Work?

Copco 1 Modeling

Solution Domain (~ 4 miles)

Mesh: Mixed Quad & Triangles

Current Topo/Bathymetry (Survey Data)

Subsurface Sediments (Two Zones Horizontally)

Subsurface Gradations: Two-Layers Vertically

Subsurface Sediments: Thickness of Top Layer

Hydrology: Three Scenarios (Start on November 15; duration is six month

IATION

Initial Condition

Reservation Elevation = 2603 ft Maximum Drawdown rate = 3 ft/day

Discharge Capacity

Storage Capacity

Sediment Size Classes

Cohesive Sediment Properties

Field Test of Cohesion by ARS:

 $k(cm^3 / N - s) = 0.5, 2.0, 20.0$

 $\tau_{cri}(Pa) = 0.2, 0.25, 2.0$

Sample Results

Typical Channel Incision through Reservoir Sediments due to Reservoir Drawn-Down (Paonia Reservoir in Colorado)

Predicted Incision

Predicted Reservoir Water Elevation and Flow Exiting the Reservoir (average year; medium-erode)

Sediment Concentration Delivered to Downstream ~ 6,000 ppm; duration=1.5 months

Erosion/Deposition Pattern (average year)

Erosion/Deposition Pattern: Zonal View (average year)

Comparison with Pre-Dam Geomorphology

Predicted Bed Elevation alongThalweg(average year)

Conclusions

- An incised channel would be formed as a result of the drawdown.
- Majority of the deposits would be eroded during the 1.5-month drawdown, particularly for the upstream half of the solution domain.
- About 6,000 ppm concentration for 1.5 months would be released downstream.

RECLAMATIC

 Some deposition is predicted on the old floodplains in the lower half of the modeled domain.

Geomorphic Map of Copco Reservoir Pre-dam geomorphology was interpreted using historical topographic maps

Eroded Depth along Thalweg Compared with Initial Top Layer Thickness (average year)

Existing Condition: 19,000 cfs

Bed Elevation Profile

