Observations of a Cosumnes River Floodplain

Greg Pasternak, Jeff Mount, Michael Anderson, Wendy Trowbridge, Carson Jeffres, Bill Fleenor

John Muir Institute for the Environment

Presentation Outline

Introduction Basin Overview Floodplain Overview Equipment Observations Future Plans

Introduction

Cosumnes floodplain hydrologic observation part of larger integrated effort of the Cosumnes Research Group studying both the Cosumnes and Mokelumne Rivers

Work carried out by participating faculty and researchers of the John Muir Institute of the Environment at UC Davis

Hydrologic Observation Floodplain hydrologic observation started in 2000 Further instruments added in 2001 and 2002 Meteorological stations added in 2003 **Observations continuing including some** equipment replacement

Cosumnes Basin Overview

1600 sq. km Area
Elevation up to around 7000 ft
USGS flow gage at Michigan Bar *
USGS stage gage at McConnell *

Floodplain Overview

Floodplain formed by intentional levee breaches approximately 11 miles downstream of the USGS McConnell stage gage.

Upper floodplain triangular in shape with adjacent farm fields

Lower floodplain connected to upper floodplain via levee breaches

Floodplain Map

Legend

Upper Floodplain

Lower Floodplain

Breach Location

Met Station

Overflow point 4/03

Photo spot

FP pond sites

Upper Floodplain Cross Levee

Upper Floodplain Cross Levee

Upper Floodplain

Levee between Upper and Lower Floodplain

Lower Floodplain

Equipment

Depth and velocity measured in 5 breaches and 3 floodplain pond sites using pressure transducers

Floodplain water temperatures measured using thermisters

Met station measures rainfall, wind speed, radiation (solar and net), temperature and relative humidity

Annual Hydrographs at Michigan Bar

Annual Volumes at Michigan Bar

Year	1907- 2000 Avg.	2000- 2001	2001- 2002	2002- 2003	1976- 1977	1982- 1983
Vol. (taf)	365	116	201	212	16	1221
% Avg.	100	32	55	58	4	577

Breach Water Elevations

Breach Water Elevations

2002-2003

Pond Elevations 2001-2002

- Upper Pond - Lower Pond - Lower South Pond

Pond Elevations 2002-2003

-Upper Pond - Lower Pond - Lower South Pond

Event Comparison

Event Comparison

2/1 to 3/31 2002 compared to 3/15-5/15 2003 Rainfall near Michigan Bar -2002: 3.9 inches - 2003: 9.49 inches (Floodplain precip 4.93 in.) Peak Average Daily Flow at Michigan Bar -2002: 2550 cfs -2003: 2920 cfs

Floodplain Comparison

Maximum Elevations in feet

Year	Breach 1	Breach 2	Breach 3	Breach 4	Breach 5
2002	14.75	13.82	16.4		13.42
2003	15.18	14.02	15.7	10.80	12.64

February and March 2002

EGN Precip - MHB Flow

February and March 2002

EGN Precip - Breach 2 Elev.

Breach Elevation Comparison 2002

← Breach 2 Elev. – Breach 1 Elev

March through May 2003

EGN Precip FP Precip — MHB Flow

EGN FP - Channel Near FP - Breach 1

What's Happening Hydrologically

- Floodplain activity tied to wet season (Oct-May) synoptic scale rainfall events in the watershed
- High variability in magnitude and timing of events
- Floodplain activity can occur even in water years classified as dry
- Upper basin snowpack can play a role in flows reaching floodplain

Modeling the Floodplain

What to model

- Flow/Stage
- Inundation Time
- Sediment/Nutrient
 Transport

Type of model

- Statistical
- Hydrodynamic/Hydrologic
- BCs/Mass Conservation
 - Overflow
 - Seepage/ET

What's Next on the Cosumnes

Quantify role of groundwater Quantify evapotranspiration Evaluate role of snowpack Evaluate modeling needs of other group members Evaluate available models Continue observation record

Acknowledgments

John Muir Institute for the Environment
 CALFED Ecosystem Restoration Program
 David and Lucille Packard Foundation

For more information contact: Jeff Mount at jfmount@ucdavis.edu Greg Pasternak at gpast@ucdavis.edu Michael Anderson at mlanderson@ucdavis.edu