Bringing it All Together Water Budget Framework

Presenter: Saquib Najmus, Ph.D., P.E., PMP RMC Water and Environment

Complex Challenges Innovative Solutions

California Stands at a Crossroad

There are Challenges Along the Road to Success

Tools are Necessary, But not Sufficient

We Need to Understand the Disagreement Problem Domain

RESOLVE CONFLICTS BETWEEN

SCIENTIFIC FACTS things that are known to be true

PUBLIC VALUES things that are regarded as desirable

Disagreement Problem Domain

FACTS

Challenge of Common vocabulary

- Same agency, different programs, different terminologies
- Different agencies, different terminologies
- Different models, different terms
- Different agreements, different terms
- Different assumptions, different meanings

Battle of Models

• <u>Platform:</u>

- MODFLOW, IGSM, IWFM, MicroFEM
- Geography
- Local, Regional, Valley-wide
- Hydrostratigraphy
- 3-layer, 10-layer, 9-layer, 7layer

Shakespearean Dilemma

"To model (be), or not to model (be), that is the question

- Whether 'tis Nobler in the mind to suffer
- The Slings and Arrows of SGMA regulations [outrageous Fortune],
- Or to take Arms against a Sea of troubles,
- And by collaborating (opposing) end them.."

Possible Solution Domain

SGMA is a Big Unifier! A Solution Framework for Water Budget

- Compilation of all readily available water budgets basin by basin
- Pilot Studies for 2 hydrologic regions to compare and resolve inconsistencies in vocabulary, data, assumptions, and computational methods
- Integrated data framework to share data to improve transparency and credibility
- Draft Water Budget Framework with standard vocabulary, data, assumptions, computational methods and approach to resolving inconsistencies
- Option for developing water budget with and without model

State of water budget and modeling in California

Bulletin 118, 2003 Water Budget Status Modeling and Data Management

Complex Challenges Innovative Solutions

Water Budget Development To model or not to model?

Model based approach: A partial snapshot

Data based approach: Step 1: Develop conceptual model and determine data need/adequacy

Groundwater Budget - Data Matrix

Aquifer

Collect well logs, e-logs, pump tests, study reports to develop a conceptual model of the aquifer

Past Studies

Compile any previous estimates of groundwater budget components in your area and surrounding groundwater basin

Data Checklist

Complete the GW budget calculation checklist to determine which component is applicable in your area and which data is required

∆S = I - O											
$= I_{RAIN} + I_{AW} + I_{SUB} + I_{STR+} I_{AR}$											
0 = 0	PUMP + OSUB + OSTR										
Budget Component significar your are		Is this budget	Data Needed								
		component significant in your area?	Aquifer Characteristics	GW Head	GW Pumping	Rainfall	Land Use	Surface Water Diversions/ Delivery	Stream/ Canal Flow	Stream/Canal Characteristics	Artificial/ Other Recharge
Storage Change (ΔS)											
ΔS	Storage Change (ΔS)		~	~							
nflow Components (I)											
I _{rain}	Recharge from Rain					~	~				
I _{AW}	Recharge from Applied Water				~		~	✓			
I _{SUB}	Subsuface Inflow		~	~							
I _{str}	Gain from Stream			~				✓	✓	~	
I _{AR}	Artifificial/Other Recharge										~
Dutflow Components (O)											
O _{PUMP}	Groundwater Pumping				~						
O _{SUB}	Subsurface Outflow		~	~							
O _{STR}	Loss to Streams			~				✓	~	~	
O _{ET}	ET from Groundwater			~			~				

Data based approach: Step 2: Analyze data and estimate groundwater budget components

From Limited Water Budgets to Comprehensive Water Budgets

Water Budget, Integrated Data, and Sustainability Mapping

What's next?

- Water budget should be approached from a systems viewpoint
- Common vocabulary should be established as soon as possible
- Level 1 water budget should be developed for as many groundwater basins and GSAs as possible with existing models, data, and tools
- A water budget framework should be established for developing water budget with and without model
- A defensible period of record for development of water budgets should be established
- A transparent integrated data framework should be established for sharing water budget data

