Reconstruction of Sacramento Valley Hydrology

Presenter: Z.Q. Richard Chen

Collaborators: Mei Lui, Liheng Zhong, Jianzhong Wang, Hongbing Yin, and Andy Draper (MWH)

Bay-Delta Office

CA Department of Water Resources

CWEMF Annual Meeting

March 13, 2016

Outline

≻Objective

Model Description

Assimilation Method

Mass Balance and Soft Constraint

Model Coupling Correction

Adjustable Model Parameter

➤Summary

Objective

To reconstruct historical hydrological datasets that are consistent with CalSim 3.0 stream network in Sacramento Valley.

Model Description

Why do we need to reconstruct historical datasets?

Inconsistency in historical hydrological datasets due to

- Span extended period of time
- Measurement error
- Different Methodology
- Different Model
- Missing data
- Originated from different agencies

Model Description

Why do we need to reconstruct historical datasets?

Many historical hydrological datasets developed by DWR, USGS, USBR, and other agencies **may not be compatible** with each other and **may not be suitable for direct use** in CalSim 3.0.

Model Description

How to reconstruct historical datasets that are consistent with CalSim 3.0 stream network?

> Sacramento Valley Hydrological Data Assimilation Model (SacDAM)

Sacramento Valley Hydrological Data Assimilation Model (SacDAM)

- CalSim 3.0 Stream Network
- CalSimHydro and Conveyance Loses
- Groundwater and surface water interaction
 by groundwater DLL

Sacramento Valley Hydrological Data Assimilation Model (SacDAM)

- Boundary Conditions:
 - Rim Inflows
 - Inflows to Delta

Sacramento Valley Hydrological Data Assimilation Model (SacDAM)

Input

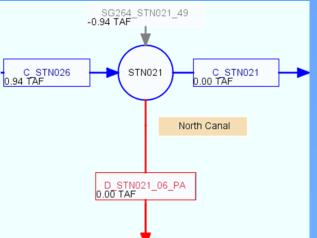
- Observations:
 - Stream Flow Records
 - Diversions
 - Reservoir Storages
 - Reservoir Releases
- Model Results
 - Applied Water Demands
 - Surface Runoff
 - Tailwater/Wastewater
 - Stream Gain/Loss

Assimilated Output

- Consistent Flow Conditions:
 - Channel Flow
 - Diversions
 - Reservoir Storage
 - Reservoir Release
 - Return Flow
 - Stream Gain/Loss
 - Conveyance Losses
 - Closure Term

Sacramento Valley Hydrological Data Assimilation Model (SacDAM)

Assimilation Method


Mass Balance and Soft Constraint

Model Coupling Correction

Adjustable Model Parameters

Mass Balance and Soft Constraint

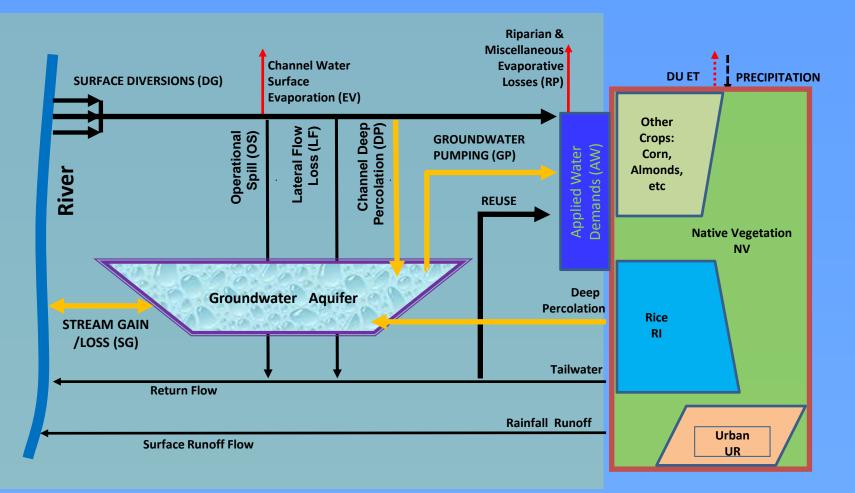
- 1. Continuity equations of CalSim 3.0 schematic ensure mass balances at all stream nodes in the Sacramento Valley.
- Soft constraints push flows in the system to be close to the observed or modeled historical amounts (input), and flows in the system (output) to deviate from the input amounts.
- 3. Constraints can be adjustable for different locations, different time periods, and different value ranges.

Mass Balance and Soft Constraint

A example of a sequence of penalties used in Sacramento River from upstream to downstream

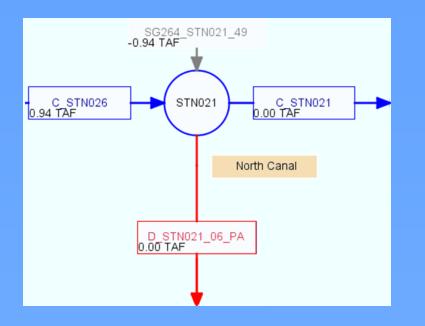
Assimilation/Gage Location	Channel Arcs	Constraint Penalty	
	C_SSSmmm	CP_SSSmmm	
Bend Bridge	C_SAC256	256000	
Butte City	C_SAC169	169000	
Wilkins Slought	C_SAC120	120000	
Freeport	C_SAC049	49000	

The set of penalties allow inconsistent data sets at those gages to be assimilated, which assumes upstream observation is more accurate than downstream observations.


Mass Balance and Soft Constraint

A generalized goal statement for positive channel flow at river locations:

where C_SSSmmm is the channel arcs of stream "SSS" and river mile "mmm",
 C_SSSmmm_HT is the historical observation, and CP_SSSmmm is the soft constraint penalty.

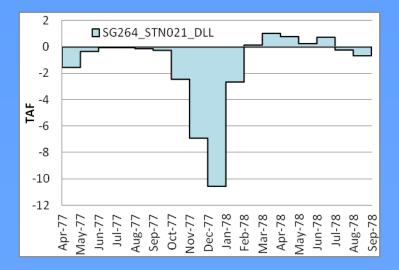

The value of the penalty CP_SSSmmm can vary with locations.

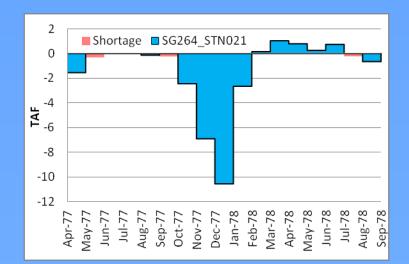
Model Coupling Correction

Model Coupling Correction

An Example of Model Coupling Correction

	GW DLL	Assimilated Flows				
	Amounts			Outflow		
	SG264_ STN021 _DLL	SG264_ STN021	C_STN026	C_STN021	D_STN021 _ 06_PA	
Apr-77	-0.94	-0.94	0.94	0.00	0.00	
May-77	-1.55	-1.55	1.55	0.00	0.00	
Jun-77	-0.34	0.00	0.00	0.00	0.00	
Jul-77	-0.04	0.00	0.00	0.00	0.00	
Aug-77	-0.05	0.00	0.00	0.00	0.00	
Sep-77	-0.13	-0.13	0.26	0.00	0.13	
Oct-77	-0.25	0.00	0.00	0.00	0.00	
Nov-77	-2.45	-2.45	3.54	1.09	0.00	
Dec-77	-6.92	-6.92	48.28	41.36	0.00	
Jan-78	-10.59	-10.59	317.34	306.75	0.00	
Feb-78	-2.66	-2.66	189.86	187.21	0.00	
Mar-78	0.15	0.15	146.37	146.52	0.00	
Apr-78	1.03	1.03	57.50	58.52	0.00	
May-78	0.79	0.79	16.21	17.00	0.00	
Jun-78	0.26	0.26	0.00	0.01	0.25	
Jul-78	0.74	0.74	0.00	0.00	0.74	
Aug-78	-0.23	0.00	0.00	0.00	0.00	
Sep-78	-0.66	-0.66	1.34	0.00	0.68	


Model Coupling Correction

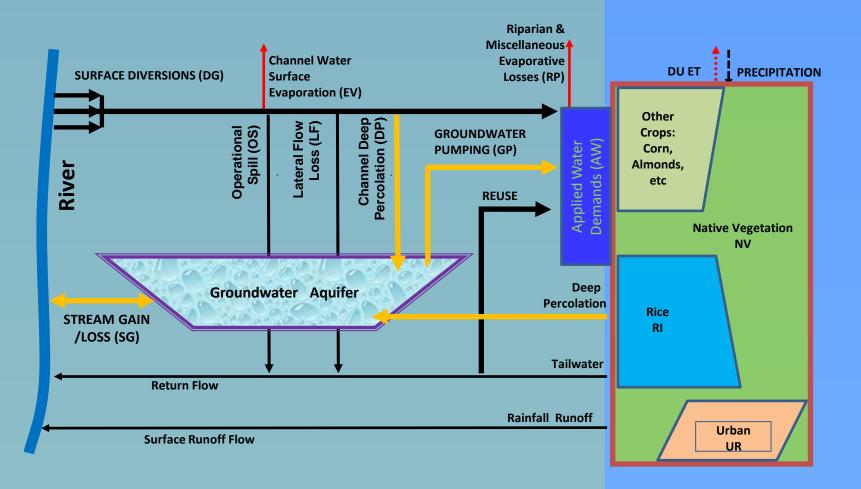

Three Goal Approach for SG

Goal#1 is to push **SG264_STN021** to the value of **SG264_STN021_DLL** when **SG264_STN021_DLL** is negative.

Goal#2 is to set the upper limit of the value of SG264_STN021 to be zero when SG264_STN021 _DLL is negative.

Goal#3 is to constrain SG264_STN021 to the value of SG264_STN021 _DLL when SG264_STN021 _DLL is positive.

Model Coupling Correction


A set of generalized goal statements to assimilate groundwater DLL SG output.

goal setNegSGnnn_CCCmmm_rr {lhs SGnnn_SSSmmm_rr
 case negative {condition SGnnn_SSSmmm_rr_DLL < 0
 rhs SGnnn_SSSmmm_rr_DLL
 lhs>rhs penalty SGPHIGH}}

goal setNeg2SGnnn_CCCmmm_rr {lhs SGnnn_SSSmmm_rr
 case negative {condition SGnnn_SSSmmm_rr_DLL <= 0
 rhs 0
 lhs<rhs penalty 0} }</pre>

where **SGnnn_SSSmmm_rr_DLL** is the SG at CV2SIM stream node "nnn" of the DLL output, which flows to CS3 stream node. **SGnnn_SSSmmm_rr** is the corresponding SG that the CalSim 3.0 accepted. **SGPHIGH** is a adjustable penalty.

Adjustable Model Parameters

CalSim 3.0

CalSimHydro

□ Adjustable Model Parameters

CalSim 3.0 Demand Unit Balance Equations

DG+RU+GP = AW +RP +EV +DP +LF +OSF

- RP = AW*RPF Riparian & Miscellaneous Evaporative Losses
- EV = DG*EVF Evaporative loss
- DP = DG*DPF Deep percolation loss
- LF = DG*LFF Lateral flow loss fraction
- OS = DG*OSF Operating spill
- RU = Min(TW, AWo*RUFo + AWr*RUFr + AWw*RUFw) Reuse
- GP > GPMINF * { AW + RP RU } Minimum GW Pumping

CalSimHydro Demand Unit Balance Equations

 $AW + PRdu = SR + TW + ETdu + DPdu + \Delta PDdu$

AW = AWr + AWo + AWw

Adjustable Model Parameters

RPF -- coefficient of Riparian & Miscellaneous Evaporative Losses

- **EVF** -- evaporative loss fraction
- **DPF** -- deep percolation loss fraction
- LFF -- lateral flow loss fraction
- **OSF** -- canal operating spill fraction
- RUFr -- Reuse factor for rice RUFo -- Reuse factor for other crops RUFw -- Reuse factor for wetland

GPMINF -- minimum groundwater pumping fraction

Summary

- 1. Sacramento Valley Hydrological Data Assimilation Model (SacDAM) has been developed
- SacDAM Reconstructed dataset is a best fit of CalSim 3.0 stream network to the available observed and model generated data, taking into account observational errors and errors in models
- 3. Results of SacDAM can be useful in many applications including CalSim 3.0 model calibration