2016 CWEMF Annual Meeting Notice Modeling Extremes: Drought to Flood and In-Betweens

Interaction of surface water and groundwater under highly dynamic conditions

Bertram L. Monninkhoff, Michael M. Gabora

bmo@dhigroup.com, mmg@dhigroup.com www.dhigroup.com www.feflow.com

- Rational for coupling FEFLOW and MIKE 11
- Brief introduction to FEFLOW
- Short description of IfmMIKE11
- Examples
 - Managed aquifer recharge and seawater intrusion Chennai, India
 - Balancing interests along the Odra River, Germany
 - Flood retention along the Elbe River, Germany

Introduction of coupled dynamics: Polder example

- Flexible mesh generation by finite element method
 - 3D- and 2D- models
 - Unstructured meshes
- Models for groundwater flow
 - Saturated flow (Darcy- Law) incl. phreatic surface
 - Unsaturated (partly saturated flow (Richards'- equation))
- Modelling of transport processes
 - Mass transport (advection, dispersion, diffusion, density dependent)
 - Heat transport
- Chemical and physical processes
 - Sorption
 - Chemical reaction processes
- Add-ons
 - Open programming interface by IFM
 - Coupling to MIKE 11
 - Coupling to PHREEQC

Type 3 boundary condition (River BC in FEFLOW)

$$q_{n_h} \approx -K_o \frac{\Delta h}{\Delta l} = -K_o \frac{h_2 - h}{d}$$

Transfer rate

te
$$\Phi_h \approx \frac{K_o}{d}$$
 in $[d^{-1}]$

$$Q = A * \phi_h(h_r - h_{gw})$$

Type 3 boundary condition (con't)

Combined or T-Infiltration

Horizontal/ lateral infiltration

Vertical/ surface infiltration

Vertical/ surface infiltration or T-infiltration?

Vertical infiltration

Wp = B

Lateral infiltration

 $Wp = 2^*H$

T-infiltration

 $Wp = 2^*H + B$

Better representation, but more complicated geometries cannot be represented.
Furthermore, dynamically flooded areas cannot be represented by standard Feflow BCs

Short description of IfmMIKE11

1D Hydrodynamics with MIKE 11

- Rainfall run-off
- 1D St. Venant equations
- Forecasting and data assimilation
- Sediment transport
- Ecological modelling
- Stationary / instationary
- **Control structures**

IfmMIKE11: Integrated coupling with the hydrodynamic 1D System MIKE11

- Dynamic coupling
- Adaptive time step control
- Rivers, polders and low lands
- Groundwater pumping on surface flows
- Wetted area in relation to the real river cross sections
- Mass transport

Saphpani, Chennai / India

Co-funding of the project by the European Commission within the 7th Framework Programme under Grant agreement number: *282911* is kindly acknowledged

Chennai – Aranai & Koratalaiyar Rivers (AK-Basin)

Objectives

- Chennai is the 4th largest metropolitan city in India.
- Seawater intrusion up to a distance of 13 km since 1969 due to extensive extraction

- To create a model concept for the Chennai case site representing:
 - surface-groundwater interactions
 - freshwater-seawater dynamics
- To create a tool to simulate MAR measures
- Simulation of MAR measures (check dams) counteract:
 - Seawater intrusion
 - Groundwater overexploitation

Modelling methodology

Groundwater model

Calibration

ObsPoint 7 in Slice 1

Observed vs simulated groundwater level in single aquifer system

ObsPoint 34 in Slice 6

Observed vs simulated piezometric head in bottom aquifer (Minjur well field)

/draulic hea/

Fringes

[m]

25 ... 30 20 ... 25 15 ... 20 10 ... 15

5 ... 0 ... -5 ... -10 .

-20

-25 ... -20 -30 ... -25

-35 ... -30 -40 ... -35 -45 ... -40

Cone of depression due to abstraction

Coupling to MIKE 11 by IfmMIKE11

MAR measure – Check dams

MAR Measure – Check dams

Groundwater head with and without existing check dams

Conclusions

- Calibrated integrated surface and groundwater model (MIKE11 and FEFLOW)
- Successful surface and groundwater modelling coupling (IfmMIKE11)
- Salinity transport could be modelled
- MAR scenarios indicate a positive but relatively slow effect
- The existing tool can be used for
 - running more specific MAR scenarios
 - optimizing well extraction schemes and locations
 - identifying drinking water protection zones
 - geothermal feasibility studies
 - Environmental Impact Assessments

Balancing interests along the Odra River, Germany

Oderbruch (low lands along Odra)

- Intensive agriculture, low lands dewatering, ecologically important habitats
- Ditches, drains, pumping stations, weirs
- Objective: Optimize water management to achieve acceptable groundwater levels for various stakeholders and maximize storage

Oderbruch (low lands along Odra)

Balancing interests on a monthly basis

Statistical analyses for current state for nature conservation

current state in March for agriculture

Nature conservation

Balancing interests on a monthly basis

Proposed measting groundwater differences in March

Conclusions

- By:
 - Changing of the target water levels of the pumping stations
 - Demolition of several pumping station
 - New construction or demolition of weirs
 - Removal of sedimentation in several ditches (clearing of mud)
 - New construction or demolition of several ditches
 - Changing connection of the dewatering ditch of the dam (Odra)
- Following main objectives for the lowlands along the river Odra could be reached:
 - Maximum water storage within the area
 - Achievement of acceptable groundwater levels for all parties (stakeholders) concerned.
 - Reduction of energy (pumping) and maintanance costs
- This could only be achieved by a fully coupled surface water and groundwater model (FEFLOW/MIKE11)!

Foto: NABU

http://de.wikipedia.org/wiki/Elbehochwasser_2002

Flood retention along the Elbe River, Germany

Optimization of fooding the River Havel to minimize flood damages along the River Elbe (Flood 2002)

Polder floding

Model overview

Optimized Results

Conclusions and Outlook

- IfmMIKE11 is a well working tools for FEFLOW, offering integrated surface- and groundwater analyses for operational use.
- The tool can (for example) be used for:
 - meeting BO driven target flows;
 - managed aquifer recharge;
 - polder management;
 - groundwater flooding;
 - mine water management and many other applications.
- The tool is ready to use and was tested successfully on numerous projects
- Further developments will include a bidirectional 2D- surface water coupling (MIKE21), time varying import filters for other 2D surface water models and an integrated coupling to sewer systems (MIKE URBAN)

Thank you for your attention Bertram L. Monninkhoff, <u>Michael M. Gabora</u>

bmo@dhigroup.com, mmg@dhigroup.com www.dhigroup.com www.feflow.com