RECLANATION Managing Water in the West

San Joaquin River Spawning Habitat Suitability Study

Elaina Gordon and Blair Greimann Sedimentation and River Hydraulics Group Technical Service Center- Denver, CO

U.S. Department of the Interior Bureau of Reclamation

San Joaquin River Restoration Program (SJRRP)

Anthropogenic impacts to Reach 1A

- Reduced flow and sediment supply
- Increased grain size and reduced mobility below Dam
- Gravel pits- online and offline
- Channelization
- Main channel and side channel narrowing
- Grade control
- Reduced topographic diversity, complexity and cover
- Invasive Species (vegetation and aquatic)
- Potential groundwater contamination

2007

Requirements for spawning habitat

Hydraulic

- Depths between 0.7 and 3.7 ft
- Velocities between 0.8 and 3.4 ft/s

(Aceituno, 1990, Stanislaus River)

ATION

Requirements for spawning habitat

Sediment

Preferred range- 25 to 100 mm, some reports up to 300 mm (SJRRP, 2010, Fisheries Management Plan)

Water Temperature

	Spawning
Optimal	≤ 57 °F (13.9 °C)
Critical	60-62.6 °F (15.6-17°C)
Lethal	≥62.6 °F (17 °C)

(SJRRP, 2010, Fisheries Management Plan)

2D Hydraulic Model Results

Binary mapping of suitability at 350 cfs

Legend					
	Area (Acres)				
			Hydraulically		
	Modeled	Inundated	Suitable Area		
	Area	Area	for Spawning		
First 5 miles downstream from dam	385	106	13		
First 10 miles downstream from dam	1,274	219	36		
Reach1A_01	1,531	293	45		
Reach 1A_02	1,975	773	32		
Total Combined	3,506	1,066	77		

Meso-Habitat Mapping (CDFW, 2009)

Bed Material and Hydraulics

Percent of Area Considered Suitable based on Depth and Velocity Criteria within each Dominant Substrate*

Meso-Habitat Mapping and Hydraulics

Statistical Analysis of Spawning Preference

Used Jacob's electivity analysis (Hamann et al., 2014)

$$D = (r - p)/(r + p - 2rp)$$

D = degree of preference (-1 to 1)r = proportion of habitat used p = proportion of habitat available

Statistical Analysis of Spawning Preference

Designation	Range
Strong Preference	0.9 to 1.0
Preference	0.6 to 0.8
Mild Preference	0.3 to 0.5
Indifference	-0.2 to 0.2
Mild Avoidance	-0.3 to -0.5
Avoidance	-0.6 to -0.8
Strong Avoidance	-0.9 to -1

Dominant Substrate	Interpretation	
Boulders	Strong Avoidance	
Bedrock	Avoidance	
Sand	Strong Avoidance	
Cobble	Mild Preference	
Gravel	Preferrence	
Silt	Strong Avoidance	
Cobble and Gravel	Strong Preference	

Hydraulics	Interpretation	
Hydraulically		
Suitable Area	Strong Preference	
Non-hydraulically		
Suitable Area	Strong Avoidance	

Mesohabitat		
category	Interpretation	
Pool	Indifference	
Run	Strong Preference	
Riffle	Strong Preference	
Glide	Avoidance	
Edgewater	Indifference	
Captured Mine Pits	Strong Avoidance	

Spawning Preferences for Hydraulic Conditions

Redd Frequency and Inundated Area Available by Depth

Pilot Sites

- 3 riffles selected with substantial redd activity in 2013 or 2014
- Field measured at each site:
 - High density topography
 - Grid of D84 and % fines
 - Velocity and WSE measurements
- Goal of study to evaluate sensitivity of predicted areas of suitability to scale of model inputs.

Refined 2D Models at 3 Pilot Sites

Example of Woodward Park at Highway 41 at 350 cfs

- Improved topographic representation
- Reduced mesh cell size to 3-5 ft width within channel
- Continuous HSI criteria

Binary Vs. Continuous HSI

- <u>Binary:</u> 1- meet both depth and velocity criteria above 0.3 HSI values or 0- does not meet both depth and velocity criteria
- <u>Continuous</u>: minimum HSI value for depth or velocity above 0.3 HSI Criteria for Stanislaus River (Aceituno, 1990)

Sensitivity of Suitable Area Prediction to Method Used

Summary of Suitable Area at Woodward Park

	Area
Prediction Method	(acres)
Coarse Mesh Binary Mapping	7.77
Refined Mesh Binary Mapping	7.12
Refined Mesh Continuous Mapping >0.25	7.39
Refined Mesh Continuous Mapping Weighted by	
HSI value	4.24

Take Home Points

- Strong correlation between hydraulically suitable area and spawning site selection.
- Salmon prefer cobble and gravel dominated substrate, but sometimes selected sand.
- Both hydraulics and substrate are important to redd site selection!
- Water temps may limit Spring-run to first 5-10 miles downstream from dam.
 - 13-36 acres of hydraulically suitable area

Study Direction

Comparison of continuous HSI for coarse mesh and 3 pilot sites

- Comparison of refined bed material representation (point measurements of D84 and %fines) with facies mapping
- Incorporate substrate HSI
- Incorporate other indicators of quality

Ultimately determine need for and potential locations of additional spawning habitat in Reach 1A RECLAMATION

Acknowledgements

- Spawning and Incubation Subgroup
 - Erica Meyers (CA DFW)
 - Andy Shriver (CA DFW)
 - Scott McBain (TAC)
 - Matt Meyers (CA DWR)
 - Carl Mesick (USFWS)

RECLAMATION

San Joaquin Restoration Program

SAN JOAQUIN RIVER RESTORATION PROGRAM

