Recent Enhancements to the Sacramento Valley Finite Element Groundwater Flow Model (SACFEM₂₀₁₃)

California Water and Environmental Modeling Forum 2016 Annual Meeting

> Presented by: Heather Perry Heather.Perry@ch2m.com

Google™ earth Image Landset

Introduction

- Background
- Model Construction
 - Areal Characteristics
 - Vertical Characteristics
 - Boundary Conditions
 - Agricultural Water Budget
 - Transient Streams and Flood Bypasses
- Model Calibration

Background

- SACFEM is a regional-scale groundwater (GW) flow model of the Sacramento Valley
- Model objectives include impacts assessment associated with GW production projects (changes in GW/SW interaction and impacts to third party wells)
- SACFEM construction began in mid-2000's undergoing several stages of refinement/recalibration and independent peer review
- Most Recent Updates (SACFEM₂₀₁₃)
 - Extension of calibration period through Water Year 2010
 - Expansion of calibration target dataset (multi-level well clusters)
 - Incorporation of transient stream stages
 - Addition of transient flood bypass inundation areas

Model Construction Areal Characteristics

- Sacramento River Hydrologic Region
- Model domain encompasses the Sacramento Valley Groundwater Basin
- Finite element model (MicroFEM)
 - 150,000+ nodes
 (300,000+ elements)
 - Nodal spacing ranges from 410 ft (125 m) to 3,300 ft (1,000 m)
 - Spacing along streams and
 bypasses = 1,640 ft (500 m)
 - Grid/mesh can be reconfigured to
 - ⁴ meet project needs

Model Construction Vertical Discretization

California Department of Water Resources. 2005. *Butte County Groundwater Inventory Analysis*. Prepared by the Division of Planning and Local Assistance, Northern District. February.

Model Construction Boundary Conditions

- Head-Dependent
 - Streams and lakes
 - Groundwater discharge to land surface
 - Flood bypasses
- Specified-flux Boundaries
 - Deep percolation of precipitation and applied irrigation water
 - Agricultural groundwater pumping
 - Mountain front recharge
 - Urban pumping
 - 6— No-flow

Model Construction Transient Stream Stage

Model Construction Transient Stream and Flood Bypass Inundation Areas

- 50 individual streams
 - Transient stages
 - Distribution of active versus dry streams based on historical gage data
- Two lakes (Thermalito and Black Butte)
 - Constant stage
- Three flood bypasses
 - Butte, Sutter, and Yolo
 - Historical flow data and flow-stage relationships used to estimate bypass inundation

Simulated Water Budget

Summary

- Recent refinements to SACFEM₂₀₁₃ include:
 - Enhanced depiction of surface water features
 - Extension of simulation period through Water Year 2010
 - Improvement of the calibration target dataset
- SACFEM₂₀₁₃ is available for local/regional scale impacts analysis
- SACFEM has been applied to numerous GW production projects
 - Lower Tuscan Conjunctive Use Study
 - Proposition 50 Groundwater Production Projects (Feather WD, Garden Highway MWC, Meridian Farms MWC, Pelger MWC, RD-108, and River Garden Farms)
 - Long-Term Water Transfer Program
- Documentation and comprehensive user's manual are available (LTWT EIR, Appendix M)
 - <u>http://www.usbr.gov/mp/nepa/nepa_projdetails.cfm?Project_ID=18361</u>
- If your project requires use of public domain model code or dynamic streamflow predictions, SACFEM₂₀₁₃ datasets can be utilized to support other platforms