# MODFLOW-OWHM Hydrologic Budgets and Case Studies

PRESENTED BY JON TRAUM, P.E.



# Outline

#### ► SGMA overview

- Types of hydrologic budgets generated by MF-OHWM
- Examples from case studies scattered within
  - CVHM (Claudia Faunt)
  - SJJRPGW (Jon Traum)
  - MERSTAN (Steve Philips)
  - SBFTM (Scott Paulinski)
  - PVHM (Randy Hanson)
  - Example Problems (Scott Boyce)

# SGMA Undesirable Results

Lowering of groundwater levels
Reduction of groundwater storage
Degraded water quality
Seawater intrusion
Land subsidence
Depletions of interconnected surface water

# Hydrologic Budgets

#### SGMA definition of hydrologic budget

- Total groundwater and surface water entering and leaving a basin
- MF-OWHM Budgets
  - Groundwater budget
  - Water use budget
  - Streamflow budget
  - MNW2 budget
  - UZF budget

#### **Pre-development**



# Processing Budgets

Many different ways to temporally or spatially aggregate budget

- Available for every model time step
- Available at detailed spatial scales (GW Budget by cell, SW Budget by stream reach)
- Some stored in binary format

Tools to help

- Zone Budget: subregional aggregation
- ModelMuse: visualization
- GW\_Chart: convert to text

# Groundwater Budget

Used to determine reduction of groundwater storage

Provides the flows into and out of each model cell in binary format

Also called cell-by-cell budget

[Values in acre-feet; totals may not sum because of rounding]

| Water-balance subre-<br>gion | Area<br>(square<br>miles) | Net storage<br>from spe-<br>cific yield and<br>compress-<br>ibility of | Net elastic<br>I and<br>inelastic stor-<br>age <sup>1</sup> | Net<br>stream<br>leakage² | Net<br>pumpage | Net<br>recharge<br>from land-<br>scape <sup>3</sup> | Precip-<br>itation | Evapo-<br>trans-<br>piration | Surface-<br>water<br>deliveries |
|------------------------------|---------------------------|------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------|----------------|-----------------------------------------------------|--------------------|------------------------------|---------------------------------|
|                              |                           | water                                                                  |                                                             |                           |                |                                                     |                    |                              |                                 |
| 1                            | 611                       | 36,000                                                                 | 13,000                                                      | -144,000                  | 45,000         | 453,000                                             | 1,063,000          | 547,000                      | 46,000                          |
| 2                            | 1,163                     | -17,000                                                                | 23,000                                                      | -294,000                  | 557,000        | 768,000                                             | 1,496,000          | 1,269,000                    | 129,000                         |
| 3                            | 1,112                     | -39,000                                                                | 3,000                                                       | -212,000                  | 49,000         | 508,000                                             | 1,125,000          | 1,300,000                    | 717,000                         |
| 4                            | 560                       | -34,000                                                                | 0                                                           | -494,000                  | 6,000          | -19,000                                             | 562,000            | 635,000                      | 78,000                          |
| 5                            | 957                       | -34,000                                                                | -1,000                                                      | -200,000                  | 65,000         | 466,000                                             | 1,200,000          | 1,101,000                    | 439,000                         |
| 6                            | 1,044                     | -47,000                                                                | 10,000                                                      | 34,000                    | 506,000        | 522,000                                             | 1,137,000          | 1,315,000                    | 329,000                         |
| 7                            | 534                       | 2,000                                                                  | 4,000                                                       | -38,000                   | 186,000        | 222,000                                             | 590,000            | 512,000                      | 172,000                         |
| Sacramento Valley            | 5,981                     | -99,000                                                                | 52,000                                                      | 1,348,000                 | 1,414,000      | 2,920,000                                           | 7,173,000          | 6,6799,000                   | 1,910,000                       |
| Eastside Streams (8)         | 1,362                     | -26,000                                                                | 7,000                                                       | 95,000                    | 850,000        | 721,000                                             | 1,365,000          | 1,444,000                    | 205,000                         |
| Delta (9)                    | 1,026                     | -218,000                                                               | 3,000                                                       | 705,000                   | 467,000        | -200,000                                            | 975,000            | 1,603,000                    | 64,000                          |
| 10                           | 1,083                     | -36,000                                                                | 29,000                                                      | 64,000                    | 60,000         | 89,000                                              | 588,000            | 1,465,000                    | 983,000                         |
| 11                           | 664                       | -21,000                                                                | 0                                                           | -98,000                   | 85,000         | 251,000                                             | 509,000            | 901,000                      | 643,000                         |
| 12                           | 540                       | -56,000                                                                | 1,000                                                       | 39,000                    | 45,000         | 131,000                                             | 384,000            | 702,000                      | 440,000                         |
| 13                           | 1,648                     | 43,000                                                                 | 67,000                                                      | 163,000                   | 754,000        | 474,000                                             | 1,092,000          | 2,233,000                    | 936,000                         |
| San Joaquin Basin            | 3,935                     | -70,000                                                                | 97,000                                                      | 168,000                   | 944,000        | 945,000                                             | 2,573,000          | 5,301,000                    | 3,002,000                       |
| 14                           | 1,071                     | 179,000                                                                | 165,000                                                     | 6,000                     | 934,000        | 418,000                                             | 432,000            | 1,631,000                    | 716,000                         |
| 15                           | 1,423                     | 26,000                                                                 | 146,000                                                     | 239,000                   | 1,603,000      | 708,000                                             | 607,000            | 2,225,000                    | 757,000                         |
| 16                           | 478                       | 89,000                                                                 | 35,000                                                      | 33,000                    | 202,000        | 212,000                                             | 299,000            | 518,000                      | 358,000                         |
| 17                           | 569                       | 54,000                                                                 | 28,000                                                      | 170,000                   | 445,000        | 348,000                                             | 358,000            | 852,000                      | 442,000                         |
| 18                           | 1,358                     | 158,000                                                                | 198,000                                                     | 104,000                   | 1,135,000      | 710,000                                             | 715,000            | 2,237,000                    | 821,000                         |
| 19                           | 1,365                     | 85,000                                                                 | 133,000                                                     | 0                         | 754,000        | 334,000                                             | 494,000            | 1,275,000                    | 367,000                         |
| 20                           | 705                       | 74,000                                                                 | 92,000                                                      | 19,000                    | 252,000        | 240,000                                             | 295,000            | 892,000                      | 610,000                         |
| 21                           | 1,105                     | 83,000                                                                 | 81,000                                                      | 130,000                   | 324,000        | 272,000                                             | 414,000            | 1,333,000                    | 1,096,000                       |
| Tulare Basin                 | 8,074                     | 748,000                                                                | 878,000                                                     | 701,000                   | 5,649,000      | 3,188,000                                           | 3,614,000          | 10,963,000                   | 5,167,000                       |
| Total                        | 20,378                    | 300,000                                                                | 1,000,000                                                   | 300,000                   | 9,300,000      | 7,600,000                                           | 15,700,000         | 25,900,000                   | 10,300,000                      |



#### Annual totals

Recent precipitation cycles





#### Annual totals



Monthly for selected year types





# Groundwater Flow Paths

- Cell to cell flow (also called subsurface flow) is a key component of the groundwater budget
- Used to analyze water quality issues including seawater intrusion
- MODPATH post-processor to estimate groundwater flow paths from cell-by-cell output
- MODPATH-OBS post-processor for MODPATH to get concentrations
- MT3DMS and SEAWAT









#### Simulated flow paths



#### Simulated travel times



### Simulated chloride concentrations

# Subsidence Term in Groundwater Budget

Subsidographs are used to determine location and magnitude of subsidence

However, budget can be helpful for determining if subsidence is "significant and unreasonable"



Change in groundwater budget due to additional pumping - shallow wells

Change in storage due to pumping shallow wells



Change in storage due to pumping deep wells

Change in groundwater budget due to additional pumping - deep wells

# Streamflow Budget

Provides the inflows and outflows to the stream network by stream reach

Can be used to determine depletion of interconnected surface water



Annual Average groundwater and surface water exchange

# Water Use Budget

- Provides the flow components related to the supply and demand of crops and other plants for each water balance subregion
- Also called landscape budget, supply and demand budget, or farm budget
- Includes groundwater pumping and recharge which are significant components of the groundwater budget
- Includes the atmospheric budget components of precipitation and evapotranspiration



A

#### Annual totals

**EXPLANATION** 

Landscape budget through time for Pajaro Valley, California

- Pumpage Precipitation
- Evapotranspiration from groundwater
- Deep percolation
   Evapotranspiration from precipitation
- Evapotranspiration from irrigation
   Runoff

Hotter color = more Ag pumping

anislaus River odesto Tuolunine Rive Turlock Delhi inast

Simulated agricultural pumping

Simulated areal recharge

Hotter color = more recharge





#### For hydrologic year types



# Simulated water supply



#### Simulated water demand



#### Comparing simulated and reported pumping – annual totals

#### EXPLANATION

Total pumpage—

- Reported from Pajaro Valley
   Water Management Agency
- Simulated in the PVWMA region of the Pajaro Valley Hydrologic Model

Total agricultural pumpage— Reported from Pajaro Valley

- Water Management Agency
- Simulated in the PVWMA region of the Pajaro Valley Hydrologic Model



| EXPLANATION |                         |  |  |  |  |  |
|-------------|-------------------------|--|--|--|--|--|
| WBS ID      | Water balance subregion |  |  |  |  |  |
| 1           | Corralitos              |  |  |  |  |  |
| 2           | Harkins Slough          |  |  |  |  |  |
| 3           | San Andreas             |  |  |  |  |  |
| 5           | Salsipudes              |  |  |  |  |  |
| 6           | Pajaro                  |  |  |  |  |  |
| 8           | Pajaro River Mouth      |  |  |  |  |  |
| 9           | Springfield Terrace     |  |  |  |  |  |
| 10          | Beach Road              |  |  |  |  |  |
| 12          | Highlands North         |  |  |  |  |  |
| 16          | San Andreas             |  |  |  |  |  |
| 17          | Beach Road              |  |  |  |  |  |
| 18          | Springfield Terrace E   |  |  |  |  |  |
| 19          | Springfield Terrace W   |  |  |  |  |  |
| 20          | Springfield Terrace SE  |  |  |  |  |  |
| 22          | San Andreas             |  |  |  |  |  |
|             |                         |  |  |  |  |  |

### Comparing simulated and reported pumping – by subregion

CUMULATIVE CHANGE IN GROUNDWATER STORAGE, IN CUBIC KILOMETERS



Combining budget types can help understand effects

# References – MODFLOW and Tools

- Hanson, R.T., Boyce, S.E., Schmid, Wolfgang, Hughes, J.D., Mehl, S.M., Leake, S.A., Maddock, Thomas, III, and Niswonger, R.G., 2014, One-Water Hydrologic Flow Model (MODFLOW-OWHM): U.S. Geological Survey Techniques and Methods 6-A51, 120 p., http://dx.doi.org/10.3133/tm6A51.
- Harbaugh, A.W., 1990, A computer program for calculating subregional water budgets using results from the U.S. Geological Survey modular three-dimensional ground-water flow model: U.S. Geological Survey Open-File Report 90-392, 46 p.
- Höffmann, J., Leake, S.A., Galloway, D.L., and Wilson, A.M., 2003, MODFLOW-2000 Ground-Water Model--User Guide to the Subsidence and Aquifer-System Compaction (SUB) Package: U.S. Geological Survey Open-File Report 03-233, 44 p.
- Konikow, L.F., Hornberger, G.Z., Halford, K.J., and Hanson, R.T., 2009, Revised multi-node well (MNW2) package for MODFLOW ground-water flow model: U.S. Geological Survey Techniques and Methods 6–A30, 67 p.
- Niswonger, R.G., and Prudic, D.E., 2005, Documentation of the Streamflow-Routing (SFR2) Package to include unsaturated flow beneath streams—A modification to SFR1: U.S. Geological Survey Techniques and Methods 6-A13, 50 p.
- Niswonger, R.G., Prudic, D.E., and Regan, R.S., 2006, Documentation of the Unsaturated-Zone Flow (UZF1) Package for modeling unsaturated flow between the land surface and the water table with MODFLOW-2005: U.S. Geological Survey Techniques and Methods 6-A19, 62 p.
- Winston, R.B., 2000, Graphical User Interface for MODFLOW, Version 4: U.S. Geological Survey Open-File Report 00-315, 27 p.
- Winston, R.B., 2009, ModelMuse-A graphical user interface for MODFLOW-2005 and PHAST: U.S. Geological Survey Techniques and Methods 6-A29, 52 p.

# References – Case Studies

- Faunt, C.C., ed., 2009, Groundwater Availability of the Central Valley Aquifer, California: U.S. Geological Survey Professional Paper 1766, 225 p. <u>http://pubs.usgs.gov/pp/1766/</u>
- Hanson, R.T., Schmid, Wolfgang, Faunt, C.C., Lear, Jonathan, and Lockwood, Brian, 2014, Integrated hydrologic model of Pajaro Valley, Santa Cruz and Monterey Counties, California: U.S. Geological Survey Scientific Investigations Report 2014–5111, 166 p., http://dx.doi.org/10.3133/sir20145111.
- Paulinski, Scott, and others. Santa Barbara and Foothill Groundwater Basins Geohydrology and Optimal Water Resources Management using Density Dependent Solute Transport and Optimization Models. In Preperation.
- Phillips, S.P., Rewis, D.L., and Traum, J.A., 2015, Hydrologic model of the Modesto Region, California, 1960–2004: U.S. Geological Survey Scientific Investigations Report, 2015–5045, 69 p., <u>http://dx.doi.org/10.3133/sir20155045</u>
- Traum, J.A., Phillips, S.P., Bennett, G.L., Zamora, Celia, and Metzger, L.F., 2014, Documentation of a groundwater flow model (SJRRPGW) for the San Joaquin River Restoration Program study area, California: U.S. Geological Survey Scientific Investigations Report 2014–5148, 151 p., http://dx.doi.org/10.3133/sir20145148