Recommendations for a Modeling Framework to Answer Nutrient Management Questions in the Sacramento-San Joaquin Delta

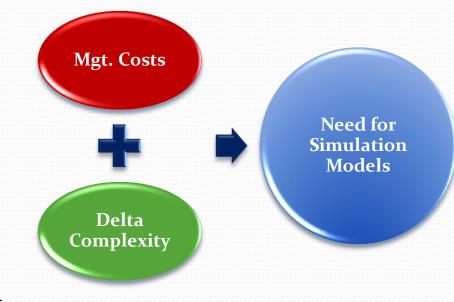
> Mike Deas, Watercourse Engineering, Inc. Chair: Modeling Science Workgroup California Water And Environmental Modeling Forum April 2016

Modeling Science Workgroup

- Phil Trowbridge (SFEI-ASC)
- Mike Deas (Watercourse Eng.)
- Eli Ateljevich (DWR)
- Eric Danner (NOAA)
- Joe Domagalski (USGS)
- Chris Enright (DSP)

- Bill Fleenor (UC Davis)
- Chris Foe (RWQCB-V)
- Marianne Guerin (RMA)
- David Senn (SFEI-ASC)
- Lisa Thompson (Regional San)

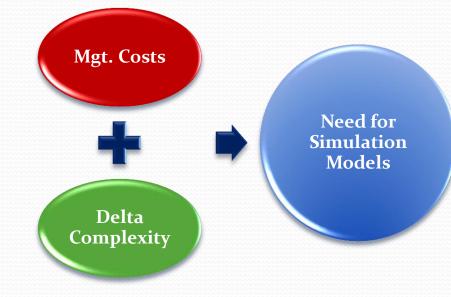
Purpose


- Setting
 - Cost of management actions in the Delta
 - Complexity of the Delta ecosystem

Purpose

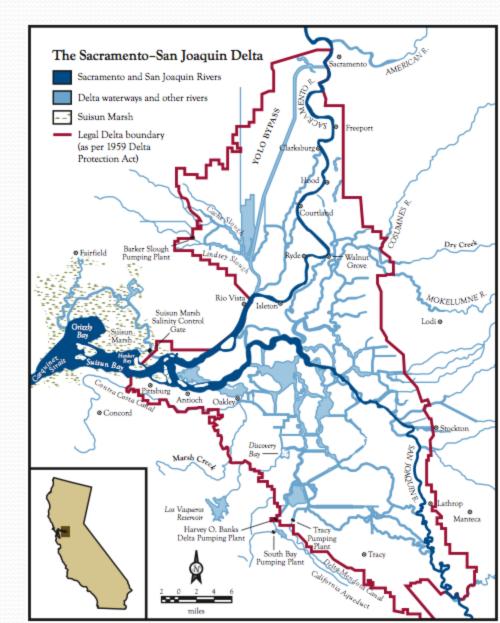
Setting

- Cost of management actions in the Delta
- Complexity of the Delta ecosystem
- Thesis
 - Setting requires that numerical, processed-based water quality modeling be part of Delta management efforts


Purpose

Setting

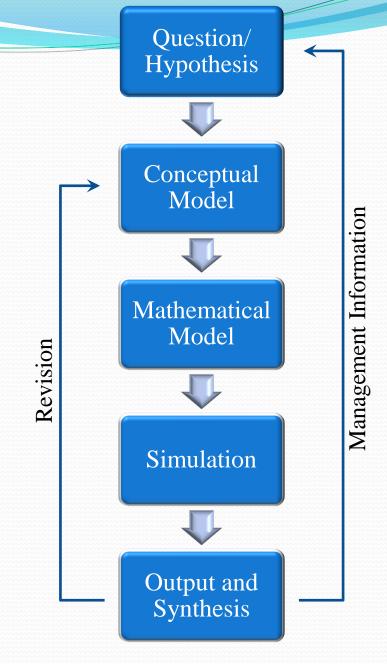
- Cost of management actions in the Delta
- Complexity of the Delta ecosystem
- Thesis
 - Setting requires that numerical, processed-based water quality modeling be part of Delta management efforts


• Response

• Water Board convened the <u>Modeling Science</u> <u>Workgroup</u> convened in 2015 to develop a white paper on the development and use of water quality models as one component of the Water Board's Nutrient Research Plan.

Charge to the Workgroup

- Provide advice to the Water Board on:
 - Types of models needed to answer nutrient management questions
 - Organizational arrangements
 - Cost estimates and phasing
- Project Area Legal Delta
- Outcome: White Paper



White Paper Organization

- Introduction to computer models
- Existing Model Software and Applications
- Nutrient Management Questions and Modeling Objectives
- Model Characteristics to Achieve Modeling Objectives
- Recommendations
- Cost Estimates
- References, Appendices, Glossary

Computer Models

"Models are tools to organize information, relate various processes, improve the understanding and characterization of aquatic systems, and test hypotheses in conjunction with field studies and management actions. *People using models as tools will provide the insight needed to formulate answers to management questions.*"

Model Strengths and Limitations

Strengths

- Comprehensive representation of complex systems
- Insight into ecological response
- Assess range of conditions
- Communication

Limitations

- Require technical expertise
- Simplistic
- Uncertainty
- Require extensive field data

Model Strengths and Limitations

Strengths

- Comprehensive representation of complex systems
- Insight into ecological response
- Assess range of conditions
- Communication

Limitations

- Require technical expertise
- Simplistic
- Uncertainty
- Require extensive field data

"All models are wrong. Some are useful." - Box

Management Questions and Objectives Scenarios

A: Current Conditions B: Future Conditions: Permitted reductions

C: Future Conditions: "B" plus BMPs D: Future Conditions: A-C plus Climate Change

Management Questions and Objectives

Scenarios

A: Current Conditions B: Future Conditions: Permitted reductions

C: Future Conditions: "B" plus BMPs D: Future Conditions: A-C plus Climate Change

Questions

- What are sources/sinks?
- Contribution to ambient conditions?
- Important processes/rates?
- Primary production response?

Management Questions and Objectives

Scenarios

A: Current Conditions B: Future Conditions: Permitted reductions

C: Future Conditions: "B" plus BMPs D: Future Conditions: A-C plus Climate Change

Questions

- What are sources/sinks?
- Contribution to ambient conditions?
- Important processes/rates?
- Primary production response?

Objectives (Model)

- Identify sources/sinks
- Quantify ambient concentrations
- Quantify important processes/rates
- Characterize primary production

Model Characteristics

- <u>General</u>
 - Costs
 - Peer review
 - User Community
 - Representations (see Technical)
 - Scalability

 Source Code

 Cost
 Verified
 Platform

 Peer Review
 Active Development

 Constituents
 Applications

 Open Source
 Institutional Support

 User community
 Training

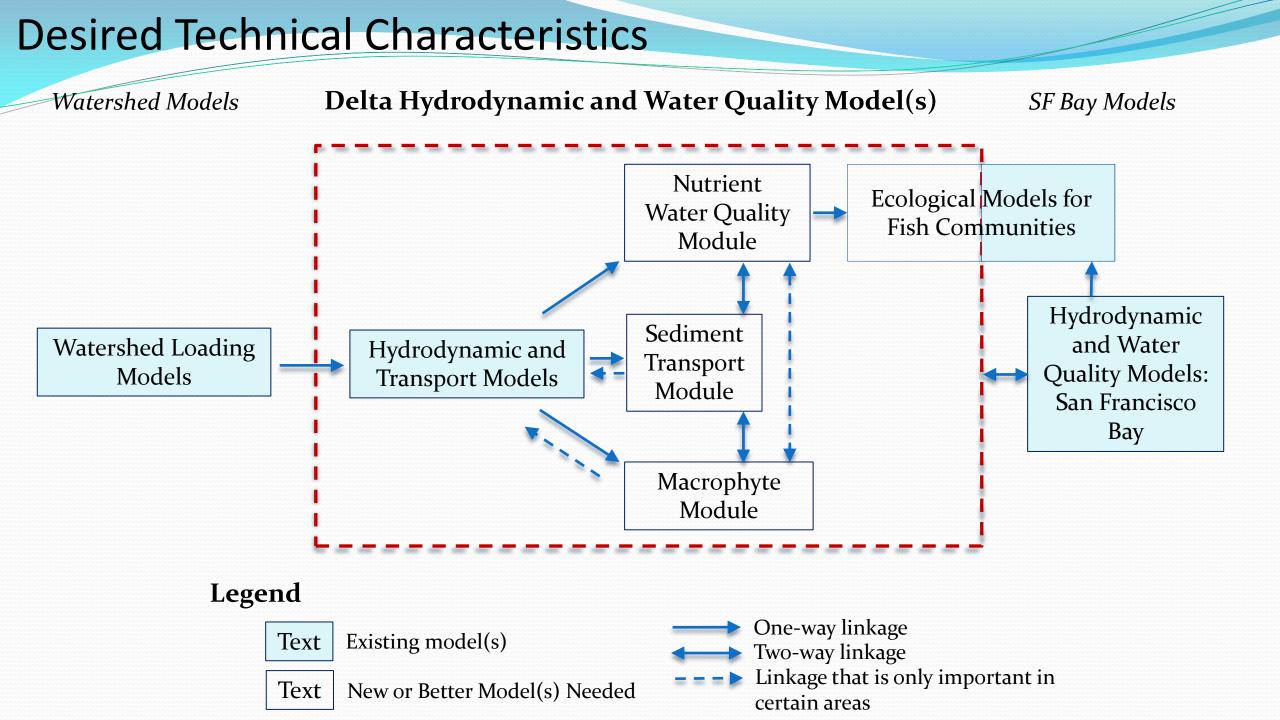
 Process Representations
 Process Representations

Model Characteristics

- <u>Technical</u>
 - Domain
 - Hydrodynamics
 - Biogeochemical
 - Dimensionality

Legal Delta Salinity **Transport Temperature** Silica **Hydrodynamic** Compatibility **Bed-Water Benthic Invertebrates** Interactions Carbon Nitrogen **Sediment transport Phosphorus Macrophytes Micronutrients Zooplankton** 1D, 2D, 3D Phytoplankton Sediment

Model Characteristics


- <u>Technical</u>
 - Domain
 - Hydrodynamics
 - Biogeochemical
 - Dimensionality

```
Legal Delta
                                   Salinity
 Transport
                   Temperature
                                  Silica
          Hydrodynamic
                            Compatibility
Bed-Water
                 Benthic Invertebrates
Interactions
                                      Carbon
                       Nitrogen
  Sediment transport
                                Phosphorus
                 Macrophytes
Micronutrients
                              Zooplankton
                 1D, 2D, 3D
     Phytoplankton
                          Sediment
```

Existing models get us close to desired characteristics, but not all the way.

Considered Models

- SCHISM (Semi-implicit Cross-scale Hydroscience Integrated System Model)
- Suntans (Stanford Unstructured Nonhydrostatic Terrain-following Adaptive Navier-Stokes Simulator)
- CASCaDE (Computational Assessments of Scenarios of Change for the Delta Ecosystem)
- DSM₂ (Delta Simulation Model II)
- RMA-2 Bay-Delta Model
- EFDC (Environmental Fluid Dynamics Code)
- UnTRIM (Unstructured Tidal, Residual, Intertidal Mudflat Model)
- CE-QUAL-W2
- SI-3D (Semi-Implicit-3D Model)

Key Recommendations

Invest in a team approach

Phased implementation using existing models

• Use multiple models

Schedule and Cost

• Components:

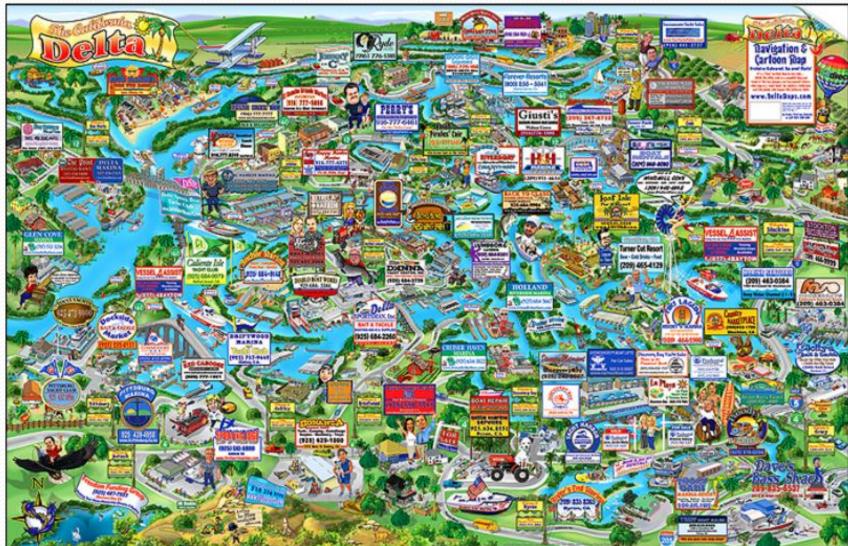
- Steering Committee
- Modeling Support
- Data Informatics Support

- Data Synthesis Support
- Monitoring Program Support
- Peer Review Panel

Schedule and Cost

• Components:

- Steering Committee
- Modeling Support
- Data Informatics Support


- Data Synthesis Support
- Monitoring Program Support
- Peer Review Panel
- 10 years to fully answer management questions
 - 2 five-year phases
- \$1.7 million per year

True Delta Complexity

- Delta Navigation and Cartoon Map
 - Created by Locals!
 - NEW (2014)!
 - Supports Local Businesses!
 - Waterproof!
 - Fun!

