

Developing Water Quality Objectives for Salinity Diversions to Agriculture using Steady-state and Transient Models

Nigel W.T. Quinn PhD, P.E., D.WRE, F.ASCE Research Group Leader, HEADS Berkeley National Laboratory

April 11, 2016

Lawrence Berkeley National Laboratory • Earth Sciences Division 1 Cyclotron Road, MS 14-134C • Berkeley, CA 94720 • 510-486-7056

Salinity regulation in the San Joaquin Basin

- The Central Valley Regional Board adopted a stakeholder-centric approach to salinity planning and regulation – CVSALTS.
 Tasked with rewriting the Basin Plan for water quality
- Basin Plan includes provision for real-time salinity management
- Requires dischargers (otherwise subject to WDR's) to adopt a "Board approved" real-time salinity management program
- Program includes continuous monitoring, data access and sharing, modeling and real-time decision support
- Reliance on sensor networks and the development of a stakeholder supported sensor web.
- Need to develop protective water quality (salinity) objectives for irrigation diversions from the San Joaquin River

Monitoring return flow and salinity to the SJR

EARTH SCIENCES DIVISION

EARTH SCIENCES DIVISION

Comparison of EC at three SJR monitoring stations

Criteria affecting water quality for crop production

Salinity

Osmotic stress on plants

Sodicity

Loss of soil permeability

Toxicity

Direct toxic effect on plants

Units of Measure for Electrical Conductivity 1 dS/m = 1,000 μ S/cm = 1 mmho/cm 1 dS/m \approx 640 mg/l or 640 ppm total dissolved solids

Salt Tolerance of Crops in the Southern Sacramento-San Joaquin Delta, Hoffman, 2010.

Factors affecting salinity objectives for irrigated agriculture

- Season-long crop salt tolerance
- Crop salt tolerance at various growth stages
- Preferential (bypass) flow of applied water
- Effective rainfall
- Irrigation method
- Crop water uptake distribution
- Climate
- Salt precipitation / dissolution
- Shallow groundwater
- Leaching fraction

Comparison of crop salt tolerance 1990's vs 2000's

Figure 3.4. Distribution of crops in the LSJR Irrigation Use Area for the 1990s and 2000s based on salt tolerance (from DWR land use surveys; DWR, 2009a).

Crop Salt Tolerance in 1990s DWR Land Use Survey

CWQRCB. LSJR Salt Tolerance Report, 2016.

Seasonal salt tolerance by crop type

HYDROECOLOGICAL ENGINEERING

ADVANCED DECISION SUPPORT (HEADS)

Y_r = 100 – b (EC_e – a)

Common Name	Botanical Name	Tolerance based on	Threshold* ECe, dS/m	Slope* % per dS/m	Relative Tolerance **
Alfalfa	Medicago sativa	Shoot DW	2.0	7.3	MS
Almond	Prunus duclis	Shoot growth	1.5	19	S
Asparagus	Asparagus officinalis	Spear yield	4.1	2.0	Т
Bean	Phaseolus vulgaris	Seed yield	1.0	19	S
Com	Zea mays	Ear FW Shoot DW	1.7 1.8	12 7.4	MS MS
Grape	Vitus vinifera	Shoot growth	1.5	9.6	MS
Oat	Avena sativa	Grain yield Straw DW			T T
Safflower	Carthamus tinctorius	Seed yield		-	MT
Tomato	Lycopersicon lycopersicum	Fruit yield	2.5	9.9	MS
Walnut	Juglans	foliar injury		-	S
Wheat	Triticum aestivum	Grain yield	6.0	7.1	MT
		Shoot DW	4.5	2.6	MT

Values of threshold = (a) and slope = (b) in above equation Relative salt tolerance ratings: (S) sensitive, (MS) moderately sensitive, (MT) moderately tolerant, and (T)

Steady-state models for soil salinity management

C = salt conc. of soil saturated extract

Salt Tolerance of Crops in the Southern Sacramento-San Joaquin Delta, Hoffman, 2010

	Exper Re	rimental sults	L, Prediction Using								- Ar	10			
Crop	<u> </u>	ECi	EC _{e50}	2EC _{e0}	5EC _{et} -EC _i	40- 20-	30- -10	Exp.							
Alfalfa	0.20	20	0.18	0.05	0.15	0.16		0.13						123	
Alfalfa	0.20	4.0	0.10	0.03	0.15	0.10		0.13	F	ora		ara	cene		
Alfalfa	0.02	10	0.00	0.03	0.00	0.02		0.09		Ula	JE	yıa	2263		
Alfalfa	0.00	20	0.23	0.06	0.25	0.31		0.17							
Barley	0.13	2.2	0.17	0.05	0.08	0.02		0.07							
Cowpea	0.17	2.2	0.31	0.09	0.38	0.45		0.22							
Fescue	0.10	2.0	0.17	0.05	0.17	0.17		0.13							
Fescue	0.25	4.0	0.25	0.07	0.40	0.58		0.23							
Oat	0.17	2.2	0.31	0.0	0.25	0.22		0.18 -	1						
Sudan Grass	0.16	2.0	0.14	0.04	0.19	0.17		0.13	Exper	imental					
Sudan Grass	0.31	4.0	0.28	0.08	0.49	0.58		0.23	Re	sults		L, Prediction Using			
							(2100	1.	EC:	EC.a	2EC-a	SECEC:	40-30- 20-10	Exp
						- F			+ -						1
				`		- h	Barley		0.10	22	0.12	0.04	0.06	0.01	0.03
			(Jere	eals	1	Cat		0.10	22	0.18	0.06	0.11	0.04	0.0
						- t	Sorah	um	0.08	22	0.22	0.08	0.07	0.01	0.0
						1	Wheat	t	0.07	1.4	0.11	0.03	0.05	0.03	0.0
lasta star						- F	Wheat		0.08	22	0.17	0.05	0.08	0.01	0.0
						-				-					

Graphical solution of model exponential uptake function

Dry bean response at various leaching rates

Table 3.1. Crop salt tolerance coefficients for important crops in the LSJR Irrigation Use Area based on Maas and Hoffman (1977); Maas and Grattan, 1999.

Common Name	Botanical Name	Tolerance based on	Threshold* ECe, dS/m	Slope* % per dS/m	Relative Tolerance**
	Medicago	Shoot			
Alfalfa	sativa	(dry weight)	2.0	7.3	MS
	Prunus				
Almond	duclis	Shoot growth	1.5	19	S
	Prunus				
Apricot	armeniaca	Shoot growth	1.6	24	S
	Phaseolus				
Bean (Dry)	vulgaris	Seed yield	1.0	19	S
	Brassica	Head			
Cabbage	oleracea	(fresh weight)	1.8	9.7	MS
	Ricinus				
Castor Bean	communis				MS
	Apium	Petiole			
Celery	graveolens	(fresh weight)	1.8	6.2	MS
Grape	Vitus vinifera	Shoot growth	1.5	9.6	MS
	Sorghum	Shoot			
Sudan Grass	sudanense	(dry weight)	2.8	4.3	MT
Walnut	Juglans	Foliar injury			S
* Values of three	eshold = (a) and	slope = (b) for E	quation 3.1		

** Relative salt tolerance ratings noted as (S) sensitive, (MS) moderately sensitive, (MT) moderately tolerant, and (T) tolerant, see Fig. 3.2.

Salt Tolerance of Crops in the Southern Sacramento-San Joaquin Delta, Hoffman, 2010

Factors affecting performance of existing transient models

- Appropriate water uptake function
- Feedback mechanism for soil-water status, plant growth & transpiration
- Allows additional water uptake from nonstressed region of root zone.
- Accounts for salt precipitation/dissolution
- Can be compared to field experimental data

- Grattan modified 40-30-20-10
- Corwin TETrans
- Simunek UNSATCHEM
- Letey ENVIRO-GRO

Factor	Grattan	Corwin	<u>Simunek</u>	Letey
Water uptake function	Yes	Yes	Yes	Yes
Feedback mechanism	No	Yes	No	Yes
Water uptake based on stress	No	Yes	No	Yes
Salt precipitation / dissolution	No	No	Yes	No
Field tested	No	Yes	Yes	Yes

Limitations of existing transient hydrosalinity models

- Poor or non-existent documentation
- Developed and more appropriate for use by the research community
- Poorly designed or non-existent graphical user interfaces
- Few are validated with field data
- Very few being used for day-to-day salinity management
- Difficult to make direct comparisons with more widely accepted steady-state models (Hoffman model)

Graphical user interface for CSUID/Hoffman model

Leaching Fraction Calculator						
File Model Setting Help						
🏚 🙀 🥌						
Project Name: C:\Users\cmail	thiot\Desktop\C	CSUID\Simul\P\	WD_V1.If			AND THE MAN
Number of Vertical Lavers	50	Choose Dep	ths info. First			
				Edit ET		
Start Date	01-Jan-20	15 11:00:00	Select	Irrigation		
End Date	31-Jan-20	15 11:00:00	Select			
Number of Plantings	1			Rain	0.0	
Leaching Fraction Calculation				Crop Editor	Land Surface (ft)	
- Models Settings				Soil Types		
Hoffman's Model Settings	In	put		Initial Salinity		
C SIUD Model Settings					6.00	
C SOLD MOUEL Settings	CSUID	Solver			Root Zone Denth (ft)	
Simulation					Root Zone Deput (ity	Leaching Flow
		A				
Choose :	Simulation Type	V				
Output		-	1		8.00	
		A			Groundwater Depth (ft)	
Manage and Visuali	ize Model Output	s M				
					9.00	
					Lower Boundary Depth (ft)	

Organization of the CSUID/Hoffman model GUI

Leaching Fraction Calculator	-						
File Model Setting Help							
🗆 🖬 🗃							
Project Name: C-UsersIcma One Dimenional Model Setting Time & Space Discretization Number of Vertical Layers Start Date	thiotDestappiC Simulat	SUIDI Simul P Ion tin Choose Dep	WD_V1.IF Nespan	Data inputs	Vertical settings	Ala Cala	
End Oute	31-Jan-201	5 11:00:00	Select	Irrigation	recap		
Number of Plantings	1.			Rain	0.0		
Models Settings		nt solver)ers	Soil Types Initial Salinity	6.00 Root Zone Depth (ft)	Leaching Flow	
Choose : Output Manage and Visual	Simulation Type		Simul: windo Outpu	ation w	8.00 Groundwater Depth (ft)		
🔘 <- Don't	hit this	one ©)		8.00 Lower Boundary Depth (ft)		

Data input screens in CSUID/Hoffman GUI

Graphical solution of model exponential uptake function

Graphical solution of model exponential uptake function

- Run CSUID model
- Run Hoffman model
- Run Hoffman model without setting the value a priori
- Automated comparison of CSUID simulations with various ECw values

- CSUID model currently limited to 2 year simulation (730 days)
- Hoffman spreadsheet model requires trial and error solution – model develops response surface automatically
- Can select leaching fractions to input into the Hoffman model or use those calculated by CSUID.
- Can adjust ECe / EC(s)w ratio
- Output graphics customized to allow direct comparison of outputs from CSUID and Hoffman models

Output for Hoffman model from CSUID GUI interface

J Leaching Fraction Calculator								Tab and prec	le 5.4. 2) inc cipitat	Outpu cluding ion dat	it from precip ta from	the s pitatio NCD	teady n (all e C stati	state n equatio ion no.	nodels ns def 6168,	both 1 ined in Newma	withou Table 5 In C and	t precip .2) with Alfalfa	oitation
File Model Setting Help								eva	potrar	nspirat	ION CO	efficie	nts fro		dhame	r and S	odel Output	1989).	
D 🕼 🥌									EC	e= 1.0] [L = 0.	.10						
Project Name: C:\Users\cmath	iot\Desktop\C	SUID\Simul\PV	VD_V1.If					R			ET _c = crop o E ₅ = off-sea P ₆₅ = precip P ₇ = total an	evapotransp ison surface pitation durin nnual (infiltra	iration evaporation g growing se ting) precipit;	1) Wi L= Lo ation EC; = ation I; = It EC ₂₀	thout precipi aching fractio Irrigation wat rigation requir p1 = Average	tation n er salinity ement soil water EC	2) With precipit I ₂ = Irrigation rec EC _{xw-2} = salinity EC _{tw-2} = Soil w EC _{tw-2} = Soil w	ation quired for L ₂ of applied wa rater salinity (4 rater salinity (5	ter 0-30-20-10) (xponential)
- One Dimenional Model Setting-								Year	Р _т (in.)	P _{NG}	E ₈	P _{as}	Perr (in.)	ET _c I	EC _{pwa}	EC _{DWD-1}	l ₂ EC (in.) (d8	xava EC _{pma} Jim) (dS/m	2 EC _{DWB-2}) (dS/m)
Time & Space Discretization								15	62 16.9 63 6.8 64 6.5 65 9.8	0.0	0.0	6.8 6.5 9.8	6.8 6.5 9.8	53.1 56 52.8 56 54.1 60	0 4.11 6 4.11 1 4.11	3.79 3.79 3.79	52.22 0 52.11 0 50.36 0	73 2.96 89 3.63 89 3.65 14 3.44	3.35 3.37 3.17
Number of Vertical Layers	50	Choose Dept	hs info. First		p.			15	66 10.9 67 8.7 68 19.7	0.0	0.0 0.0 0.0	10.9 8.7 19.7	10.9 8.7 19.7	55.0 61 54.8 60 54.2 60	1 4,11 9 4,11 3 4,11	3.79 3.79 3.79	50.17 0 52.20 0 40.58 0	82 3.37 86 3.52 67 2.76	3.11 3.25 2.55
Start Date	01-Jan-20	15 11:00:00	Select	Edit ET				15	69 10.8 60 6.6 61 7.1 62 12.0	0.0	0.0	10.8 6.6 7.1 12.0	10.8 6.6 7.1 12.0	54.4 60 53.3 56 52.2 58 51.7 57	5 4.11 3 4.11 0 4.11 5 4.11	3.79 3.79 3.79 3.79	49.61 0 52.64 0 50.85 0 45.47 0	82 3.37 89 3.65 88 3.60 79 3.25	3.11 3.36 3.32 3.00
End Date	31-Jan-20	15 11:00:00	A	Irrigation		Hoffman's Mod	lel Output	15	64 6.5 65 10.3 66 10.6 67 13.5	0.0	0.0	6.5 10.3 10.6 13.5	6.5 10.3 10.6 13.5	49.4 54 50.9 56 49.7 55 52.9 54 51.0 56	6 4.11 2 4.11 7 4.11 7 4.11	3.79 3.79 3.79 3.79 3.79	40.91 0 50.12 0 44.94 0 48.17 0 43.20 0	74 3.00 89 3.64 81 3.34 82 3.37 76 3.13	2.82 3.35 3.08 3.11 2.89
Number of Plantings	1							15 15 15	68 6.1 69 18.8 70 8.6 71 13.4	0.0	0.0 0.0 0.0	6.1 18.8 8.6 13.4	6.1 18.8 8.6 13.4	52.4 58 51.0 58 52.9 58 50.5 56	3 4.11 7 4.11 8 4.11 1 4.11	3.79 3.79 3.79 3.79	52.22 0 37.88 0 50.12 0 42.72 0	90 3.68 67 2.74 85 3.50 76 3.13	3.39 2.53 3.23 2.88
Leaching Fraction Calculation Models Settings Hoffman's Model Settings C SUID Model Settings Simulation Choose Sir Output Manage and Visualize	C SUID	put Solver		Root Zone SW Saini L2 0.3 0.4 0.5 Irrigation Water Sali	e Salnity Without Pre ty With Precipitation 0.6 0.7 0.8 inity (ECi)	0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	101 10.8 10.6 10.4 10.2 100 100 100 100 100 100 100 10	ekł Without Precipitatie 0.3 0.4 0 Irrigation Wate	121 0 2 1 1 2 1 3 1 2 1 7 5 1 1 2 1 7 5 1 1 7 5 1 7 5 1 1 2 1 7 5 1 1 2 1 7 5 1 1 2 1 7 5 1 1 2 1 7 5 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	6 0.7 ty (ECi)		62.0 1115 1115 1115 1115 1115 1115 1115 11	8270 1115 15 115 15 15 15 15 15 15 15 15 15	3413 5 5 32 3413 5 5 32 3513 6 6 33 353 5 5 5 353 5 5 5 5 353 5 5 5 5 5 353 5 5 5 5 5 5 353 5 7 6 6 5 5 7 6 6	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	2.75 2.75	32311 0 0 32311 0 0 444 532 0 445 532 0 445 332 0 444 0 0 52311 0 0 444 0 0 444 0 0 5231 0 0 5231 0 0 5231 0 0 5231 0 0 5231 0 0 5231 0 0 5231 0 0 5231 0 0 5231 0 0 5231 0 0 5231 0 0 5231 0 0 5231 0 0 5231 0 0 5231 0 0 5231 0 0 5331 0 0 <th>mp 7.6 7.1 7.5 12.2 2.3 3.6 1.6 7.5 12.2 2.3 3.6 1.6 7.5 7.6</th> <th>3.39.4 3.104 3.105 3</th>	mp 7.6 7.1 7.5 12.2 2.3 3.6 1.6 7.5 12.2 2.3 3.6 1.6 7.5 7.6	3.39.4 3.104 3.105 3

Effect of leaching rate and rainfall on yield response

Figure 5.13a. Relative alfalfa yield (percent) as a function of irrigation water salinity (EC_i) with L=0.10 assuming median precipitation (solid lines) and minimum precipitation (dashed lines) from NCDC station no. 6168, Newman C (for Crows Landing and Patterson) and NCDC station no. 5738, Modesto C (for Maze) for water years 1952 through 2008.

Figure 5.13b. Relative alfalfa yield (percent) as a function of irrigation water salinity (EC_i) with L=0.15 assuming median precipitation (solid lines) and minimum precipitation (dashed lines) from NCDC station no. 6168, Newman C (for Crows Landing and Patterson) and NCDC station no. 5738, Modesto C (for Maze) for water years 1952 through 2008.

b1) Crows Landing and Patterson

CWQRCB. LSJR Salt Tolerance Report, 2016

Soil water salinity vs total annual rainfall by root zone uptake function

Figure 5.11a. Average soil water salinity (EC_{sw}) vs. total annual rainfall for alfalfa with leaching fractions ranging from 0.07 to 0.20 and irrigation water (EC_i) = 1.0 dS/m using the 40-30-20-10 crop water uptake function from NCDC station no. 6168, Newman C (for Crows Landing and Patterson) and NCDC station no. 5738, Modesto C (for Maze) for the water years 1952 through 2008.

CIENCES DIVISION

Figure 5.11b. Average soil water salinity (EC_{sw}) vs. total annual rainfall for alfalfa with leaching fractions ranging from 0.07 to 0.20 and irrigation water (EC_i) = 1.0 dS/m using the exponential crop water uptake function* from NCDC station no. 6168, Newman C (for Crows Landing and Patterson) and NCDC station no. 5738, Modesto C (for Maze) for the water years 1952 through 2008.

CWQRCB. LSJR Salt Tolerance Report, 2016

CSUID GUI flow, EC and salt load model outputs

Summary and Conclusions

- Real-time water quality (salinity) management will require better understanding of appropriate crop leaching rates for various irrigation application water salinities
- Steady-state models have been used successfully for planning studies but have limitations as decision support systems at the watershed level
- Existing transient salinity models have limited utility given their lack of documentation, graphical user interfaces and limited visualization
- The CSUID-Hoffman model addresses these deficiencies –provides greater decision support capability.
- Model currently being applied to investigate long-term yield declines in alfalfa and Jose tall wheat grass in Panoche Water District