Using Cross-Sectional models to Develop Measurable Objectives for Seawater Intrusion

Presenter: Sean Culkin¹ Co-authors: Cameron Tana¹ and Derrik Williams¹ ¹ HydroMetrics Water Resources Inc.

Seawater Intrusion

- Increasing Population along Coastal Zones
 Increasing Groundwater Use
- Climate Change and Sea Water Rise

Sustainable Groundwater Management

- The 2014 California Sustainable Groundwater Management Act (SGMA)
 - Seawater intrusion = undesirable result
- Groundwater Sustainability Plans (GSPs) must define a measurable objective to prevent seawater intrusion.
 - Draft Regs: "The minimum threshold for seawater intrusion shall be the location where seawater intrusion is considered significant... defined by a numeric chloride concentration."
 - Long-term measurable objective: protective groundwater elevations.

Measurable Objectives

Protectively high GW elevation inland will allow for enough discharge to prevent intrusion

Production Wells

Seawater/freshwater interface may be far offshore, inland water quality may not be indicative of intrusion risk

Two Case Studies

Seaside Basin: Declining Groundwater Elevations

Santa Cruz Mid-County Basin

Sustained low water levels – below sea level – increase risk of impact to groundwater quality.

Risk not identifiable from salinity.

Model Challenges and Approach

Model Challenges and Approach

- Modeling density dependent flow is numerically intensive
- Unknown location of freshwater-salt water interface
- Model discretization limitations
- Lack of offshore data

Calculating Protective Elevations

Ghyben-Herzberg

Does not account for outflow from aquifer

Calculating Protective Elevations

- Glover Equation
 - Corrects for outflow
 - As in Ghyben-Herzberg, does not account for hydrostratigraphy, bathymetry

 Cross-Sectional models have been used to provide more accurate protective elevation calculations in complex layered systems

-Summarized from Todd Groundwater peer review of model results

Cross-Sectional Models

Cross-Sectional Models

Cross-Sectional Models

SEAWAT 2000 Grid

Not Protective – Too Low

Too Protective – Too High

Protective Interface – Minimum Groundwater Elevation to Protect Location

Parameter Uncertainty

Hydraulic conductivity (K) in meters per day

Monte Carlo Analysis

70% threshold for defining protective elevation informed by stakeholder input

Protective at 6+ Feet

Protective Groundwater Elevations – Seaside Basin

Hydro Agetrics wR

Seaside Basinwide Groundwater Flow Model

- Calibrated to 1987-2008 groundwater level data
- Used to evaluate 5 management alternatives
 - Baseline case
 - 1) In-lieu recharge
 - 2) In-lieu recharge and injection
 - 3) Shallow/deep groundwater injection
 - 4) Coastal injection barrier
 - 5) Redistribution of pumping away from coastal area
- Predictive Period 2009-2031

Evaluate vs. Protective Elevation

Protective Groundwater Elevations: Santa Cruz Mid-County Basin

Sensitivity to orientation of cross-section

Variation from Ghyben-Herzberg Result

Sensitivity to observation point

Sensitivity to Boundary Conditions

Santa Cruz Mid-County Basin Management

 Cross-sectional model results have informed changes to pumping configuration

Pumping shifted inland from coastal wells, groundwater levels recover to above protective level

Santa Cruz Mid-County Basin Management

- Protective Groundwater Elevations used as monitoring criteria for Purisima Formation
- Protective Groundwater Elevations will be used to evaluate results of forthcoming groundwater-surface water model

Conclusions

- Method is an improvement over direct calculations
- Establishes flexible, locally-specific measureable objectives
- Specifically accounts for uncertainty
- Can be used for adaptive management and planning

Sea Level Rise and Intrusion

- Sea level rise may propagate inland through confined aquifers potentially low risk to protective groundwater elevations
 - If discharge from freshwater aquifer remains constant, long-term impact of intrusion may be mitigated

Acknowledgements and Contact

- Seaside Basin Watermaster
- Watermaster Technical Advisory Committee
- Soquel Creek Water District
- City of Santa Cruz
- Santa Cruz Mid-County Groundwater Agency
- sean@HydroMetricsWRI.com