RECLANATION Managing Water in the West

Climate Change Adaptation Strategies and Insights Sacramento-San Joaquin Basins Study

CWEMF Annual Meeting

April 13, 2016

U.S. Department of the Interior Bureau of Reclamation

Session Presentations

- Climate Change Impact Study with CMIP5 and Comparison with CMIP3 – Jay Wang (DWR)
- Assessing Impacts of Climate and Socioeconomic Changes on Central Valley System Risk and Reliability – Brian Van Lienden, and Tapash Das (CH2M)
- Development of Water Management Actions and Portfolios to Address Central Valley System Risks – Armin Munévar (CH2M)
- Evaluation of Portfolio Performance and Trade-offs in Management of Future Central Valley System Risks – Michael Tansey (Reclamation)
- Next Steps for the Sacramento and San Joaquin Basins Study Arlan Nickel (Reclamation)
- Discussion

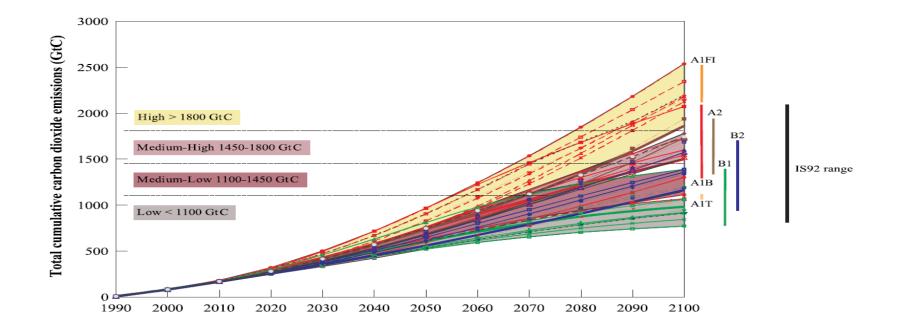
RECLAMATION

Climate Change Impact Study with CMIP5 and Comparison with CMIP3

Jianzhong Wang, Hongbing Yin, Erik Reyes and Francis Chung Bay-Delta Office, Department of Water Resources, California

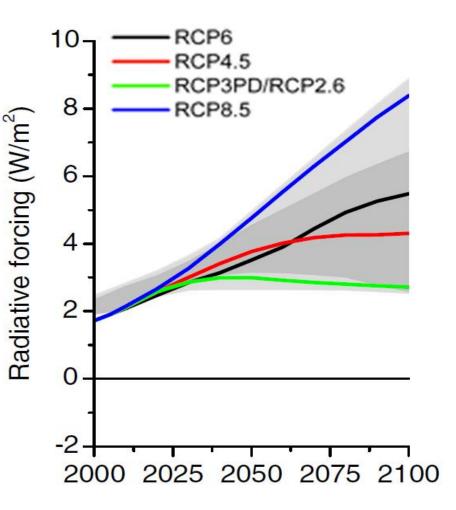
Previous CC Impact Study with CMIP3 in DWR

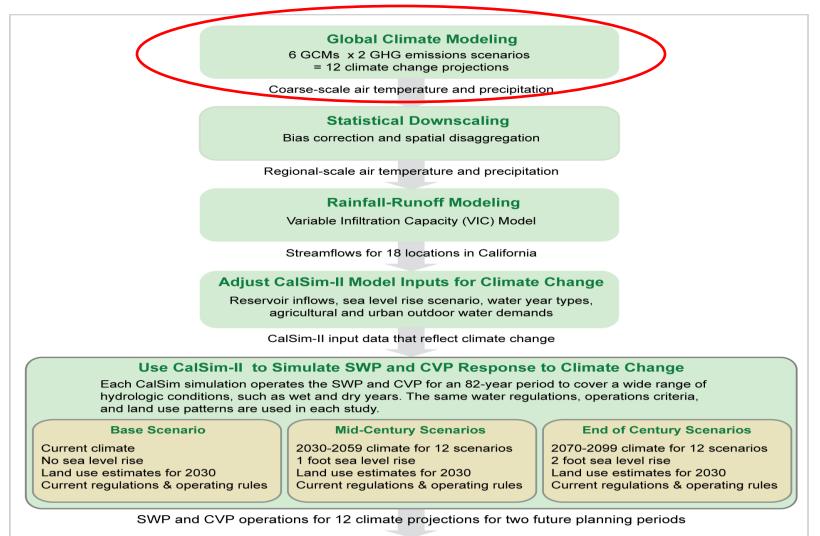
- 2006: "Progress on Incorporating Climate Change into Management of California's Water Resources"
- 2009: "Using future climate projections to support water resources decision making in California"
- BDCP: "APPENDIX 5A.2 CLIMATE CHANGE APPROACH AND IMPLICATIONS FOR AQUATIC SPECIES"


CMIP3 vs. CMIP5

- CMPI3:Coupled Model Intercomparison Project
 Stage 3, used for the Fourth Assessment Report
 (AR4) of the Intergovernmental Panel on Climate
 Change (IPCC)
- CMIP5: Coupled Model Intercomparison Project
 Stage 5, used for the Fifth Assessment Report
 (AR5) of IPCC

CMIP3 : AOGCMs and SRES


- 23 AOGCMs: Atmosphere-Ocean GCMs
- SRES: The Special Report on *Emissions Scenarios* (SRES)

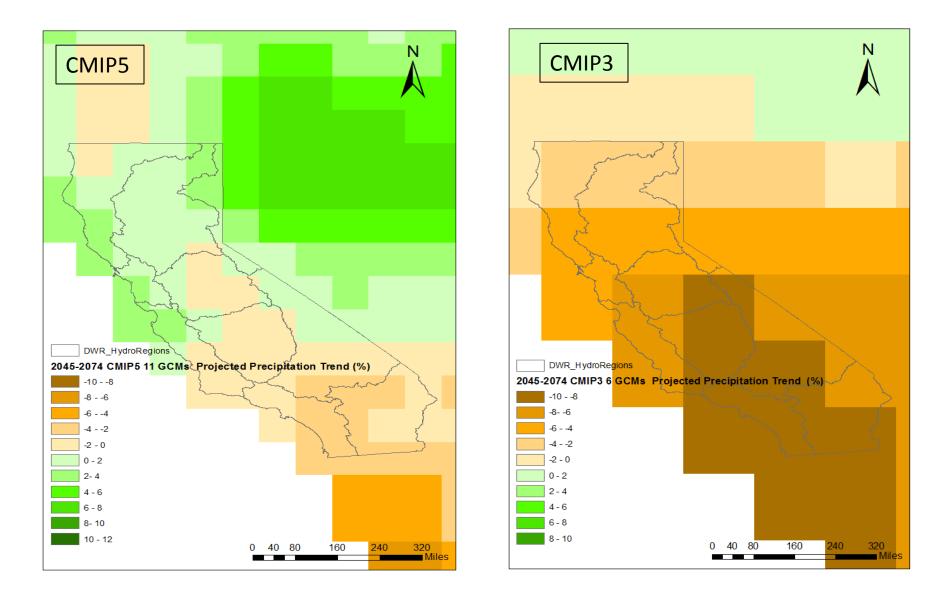

CMIP5: AOGCMs (or ESMs) and RCP

- 31 models
- Four RCPs (Representative Concentration Pathways): RCP 2.6, RCP4.5, RCP6.0, and RCP 8.5
- High resolution and more complex physics !!!

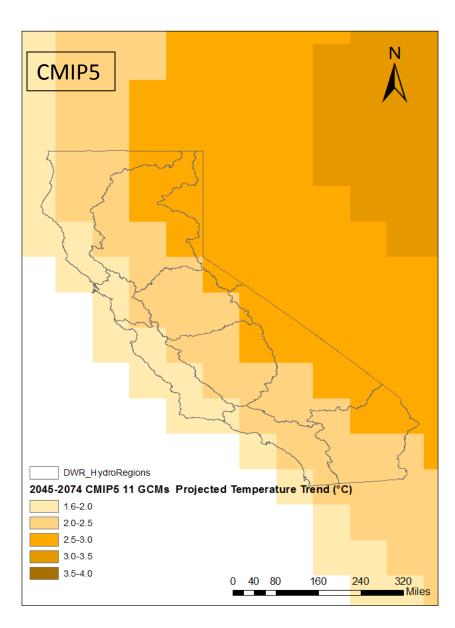
Approach for Assessing Potential Impacts of Climate Change: Select

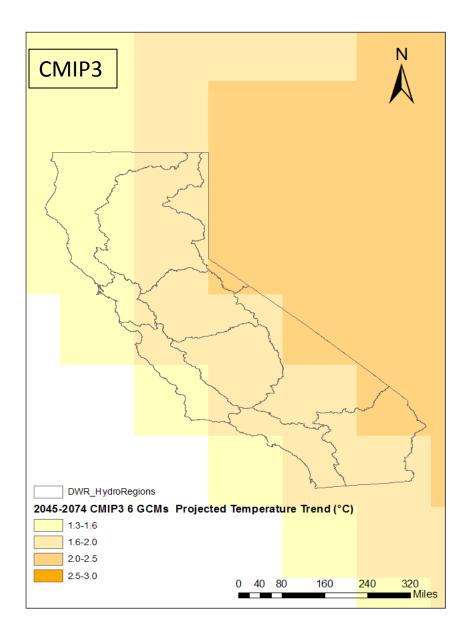
GCMs and Emission Scenarios

Analysis of SWP and CVP Impacts under Climate Change


Water exports from the Delta Reservoir carryover storage

Groundwater pumping Delta salinity indicator X2 System vulnerability to interruption


Selection of GCM Projections from CMIP3 and CMIP5


	Selection of CMIP5	GCM Projections	-		
Model	Institution	Ensemble Run	RCP		Subtotal
	Centre for Australian Weather and				
ACCESS 1.0	Climate Research	1	rcp45	rcp85	2
CMCC-CMS	Euro-Mediterranean Center of Italy	1	rcp45	rcp85	2
CESM1-BGC	NCAR (USA)	1	rcp45	rcp85	2
CCSM4	NCAR (USA)	5	rcp45	rcp85	10
CNRM-CM5	National Centre for Meteorological Research of France	1	rcp45	rcp85	2
	Center for Climate System				
MIROC5	Research of Japan	1	rcp45	rcp85	2
GFDL-CM3	GFDL (USA)	1	rcp45	rcp85	2
GFDL-ESM2M	GFDL (USA)	1	rcp45	rcp85	2
HadGEM2-ES	Hadley Centre of UK	4	rcp45	rcp85	8
HadGEM2-CC	Hadley Centre of UK	1	rcp45	rcp85	2
	Canadian Centre for Climate				
CANESM2	Modelling and Analysis	5	rcp45	rcp85	10
				Total Projections	44
	Selection of CMIP3	GCM Projections			
Model	Institution	Ensemble Run	SRES		Subtotal
	Max Planck Institute for				
MPI-ECHAM5	Meteorology of German	1	A2	B1	2
GFDL-CM2.1	GFDL (USA)	1	A2	B1	2
NCAR PCM1	NCAR (USA)	1	A2	B1	2
NCAR CCSM3	NCAR (USA)	1	A2	B1	2
CNRM-CM3	National Centre for Meteorological Research of France	1	A2	B1	2
	Center for Climate System				
MIROC3.2-MED	Research of Japan	1	A2	B1	2
				Total Projections	12

Precipitation Trend Projected By Selected CMIP3 and CMIP5 Projections

Temperature Trend Projected By Selected CMIP3 and CMIP5 Projections

Approach for Assessing Potential Impacts of Climate Change: *Perturb Rim Inflow*

Global Climate Modeling

6 GCMs x 2 GHG emissions scenarios = 12 climate change projections

Coarse-scale air temperature and precipitation

Statistical Downscaling

Bias correction and spatial disaggregation

Regional-scale air temperature and precipitation

Rainfall-Runoff Modeling

Variable Infiltration Capacity (VIC) Model

Streamflows for 18 locations in California

Adjust CalSim-II Model Inputs for Climate Change

Reservoir inflows, sea level rise scenario, water year types, agricultural and urban outdoor water demands

CalSim-II input data that reflect climate change

Use CalSim-II to Simulate SWP and CVP Response to Climate Change

Each CalSim simulation operates the SWP and CVP for an 82-year period to cover a wide range of hydrologic conditions, such as wet and dry years. The same water regulations, operations criteria, and land use patterns are used in each study.

Base Scenario

Current climate No sea level rise Land use estimates for 2030 Current regulations & operating rules

Mid-Century Scenarios

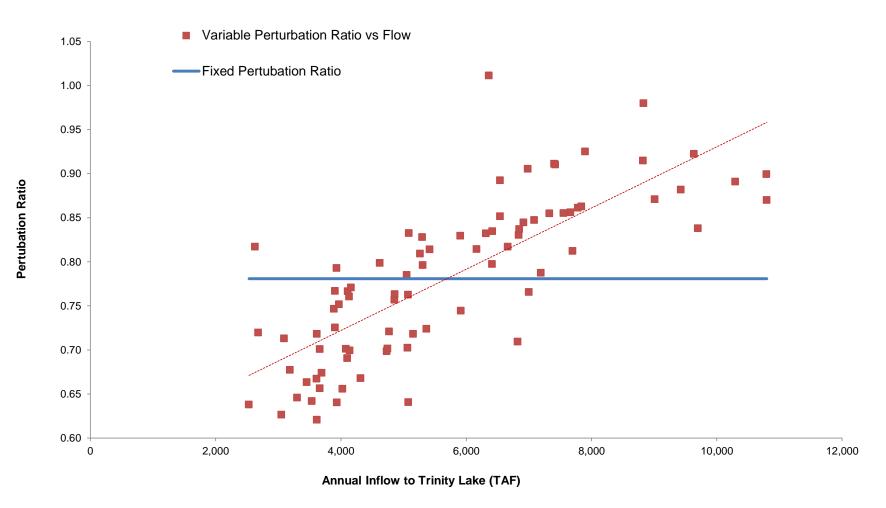
2030-2059 climate for 12 scenarios 1 foot sea level rise Land use estimates for 2030 Current regulations & operating rules

End of Century Scenarios

2070-2099 climate for 12 scenarios 2 foot sea level rise Land use estimates for 2030 Current regulations & operating rules

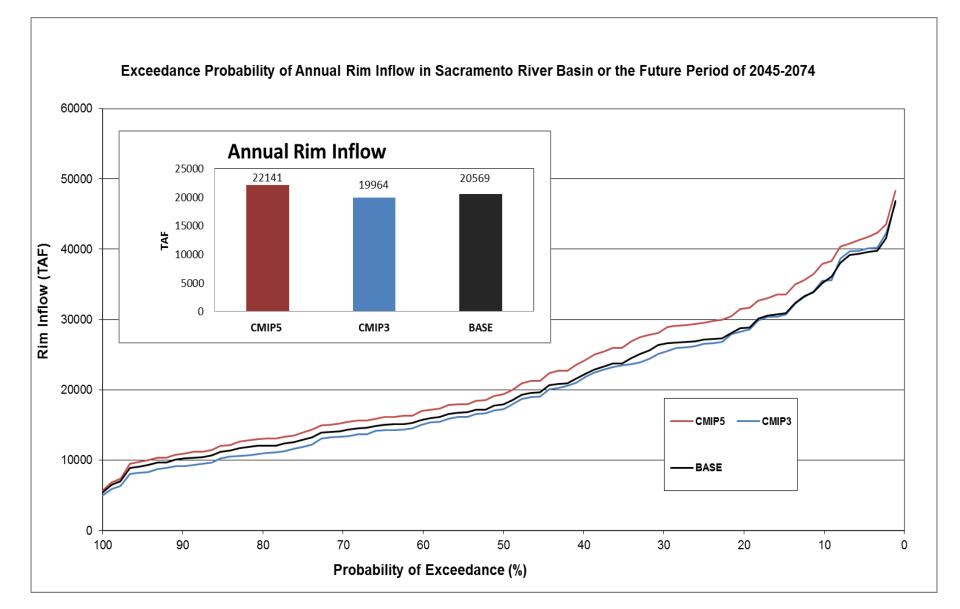
SWP and CVP operations for 12 climate projections for two future planning periods

Analysis of SWP and CVP Impacts under Climate Change

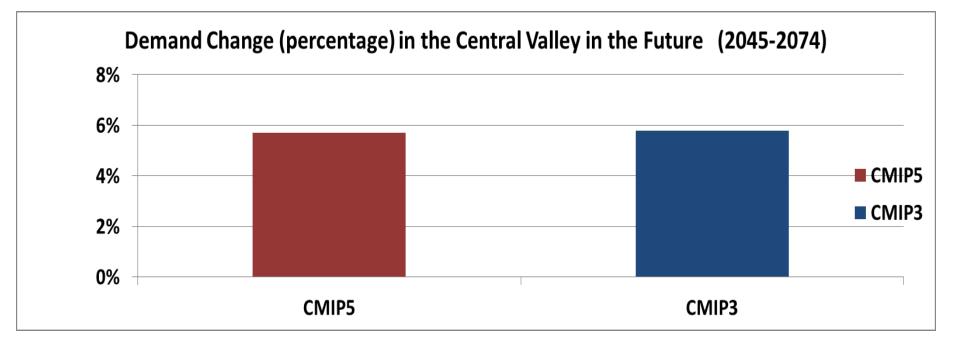

Water exports from the Delta Reservoir carryover storage

Groundwater pumping Delta salinity indicator X2 System vulnerability to interruption

Climate Change (CC) Modified Water Supply and Water Demand


- CC water supply: Perturb Rim inflow
- CC water demand: Perturb Applied Water

Variable Perturbation Ratio vs. Fixed Perturbation Ratio


Variable Perturbation Ratio for Inflows to Trinity Lake under the BDCP Climate Change Scenario Q2

Perturbed Rim Inflow (1)

Perturbed Water Demand

- Perturb Temperature
- Perturb Precipitation
- Perturb Evaportranspiration
 - $ET_{crop-cc} = ET_{crop} * (T_{future} + 17.8) / (T_{historical} + 17.8)$

Approach for Assessing Potential Impacts of Climate Change:

Use CalSim 3.0 to Simulate SWP/CVP Response to Climate Change

Global Climate Modeling

6 GCMs x 2 GHG emissions scenarios = 12 climate change projections

Coarse-scale air temperature and precipitation

Statistical Downscaling

Bias correction and spatial disaggregation

Regional-scale air temperature and precipitation

Rainfall-Runoff Modeling

Variable Infiltration Capacity (VIC) Model

Streamflows for 18 locations in California

Adjust CalSim-II Model Inputs for Climate Change

Reservoir inflows, sea level rise scenario, water year types, agricultural and urban outdoor water demands

CalSim-II input data that reflect climate change

-Use CalSim-II to Simulate SWP and CVP Response to Climate Change

Each CalSim simulation operates the SWP and CVP for an 82-year period to cover a wide range of hydrologic conditions, such as wet and dry years. The same water regulations, operations criteria, and land use patterns are used in each study.

Base Scenario

Current climate No sea level rise Land use estimates for 2030 Current regulations & operating rules

Mid-Century Scenarios

2030-2059 climate for 12 scenarios 1 foot sea level rise Land use estimates for 2030 Current regulations & operating rules

End of Century Scenarios

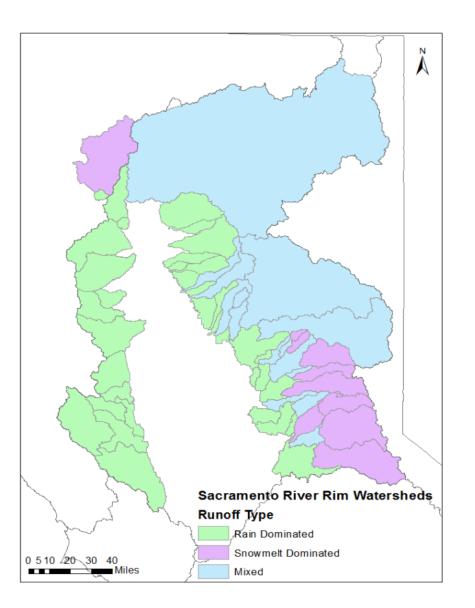
2070-2099 climate for 12 scenarios 2 foot sea level rise Land use estimates for 2030 Current regulations & operating rules

SWP and CVP operations for 12 climate projections for two future planning periods

Analysis of SWP and CVP Impacts under Climate Change

Water exports from the Delta Reservoir carryover storage

Groundwater pumping Delta salinity indicator X2 System vulnerability to interruption


New Water Planning Model : CalSim 3.0

Many improvements in CalSim 3.0 will facilitate a better understanding of climate change impacts:

- Increased spatial resolution of rim and expanded representation of water control facilities in rim watersheds
- Consistent and transparent representation of Central Valley floor hydrology facilitates the representation of climate change effects on agricultural, urban, and managed wetland water demands.
- Coupled representation of surface water and groundwater allows impacts of climate change on groundwater to be evaluated and potentially supports long-term management of groundwater resources.

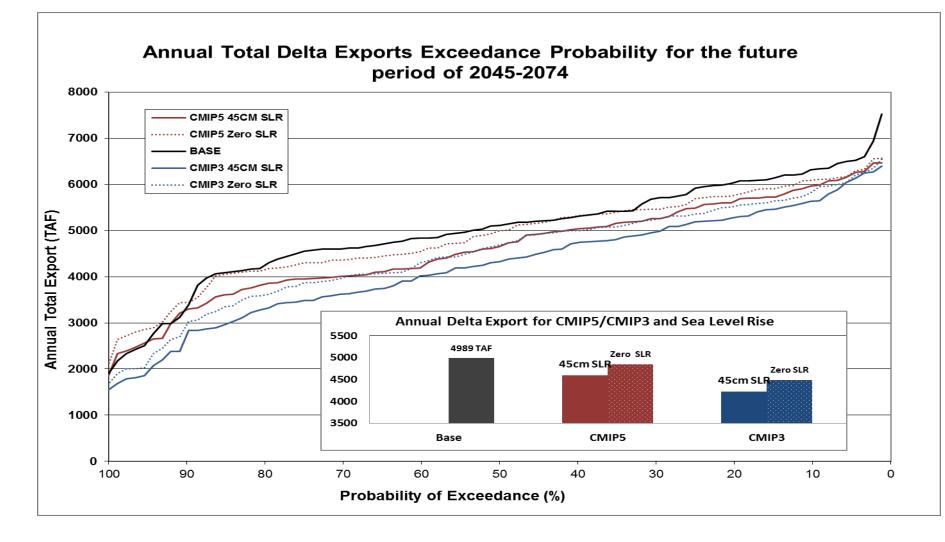
Runoff Types

- Rainfall runoff dominated watersheds: runoff peaks in January-February
- Snowmelt runoff dominated watersheds: runoff peaks in April-May
- Mixed watersheds: runoff peaks in March

Variable Sea Level Rise

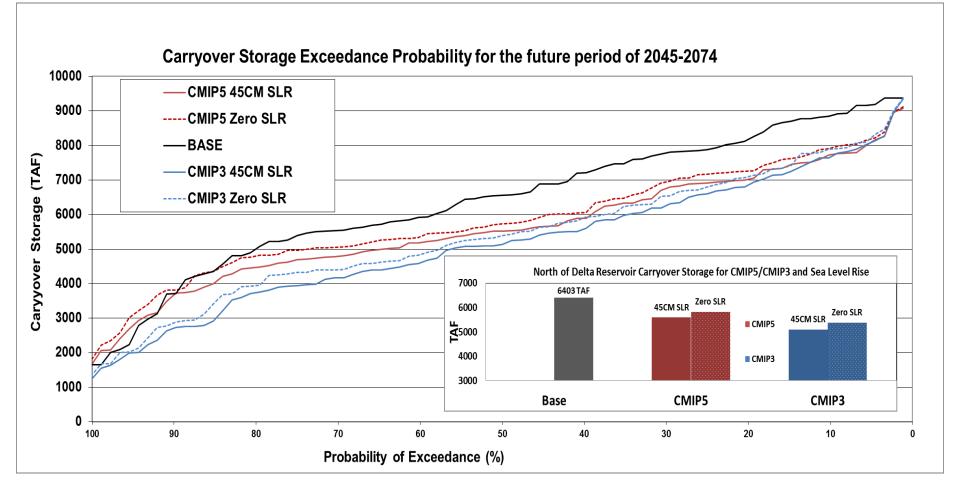
- Planning Period: 2045-2074
- For each climate model projection CalSim 3.0 runs twice, with zero and 1.5ft sea level rises, respectively.
- Total runs: 2*(44+12) =112
- The Martin Vermeera and Stefan Rahmstorfb (2009) approach for the estimate of future sea level rise for each climate projection
- Interpolation using CalSim 3.0 run result of zero and 1.5ft sea level rise

Biological Opinion

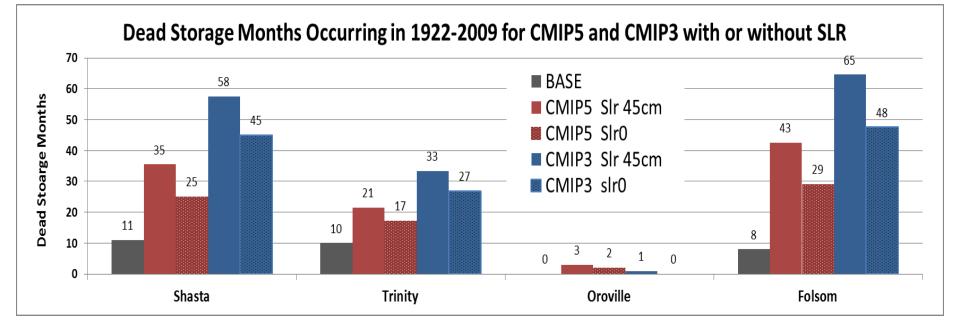

- A biological opinion (BO) on the Long-Term Operational Criteria and Plan (OCAP) for coordination of the Central Valley Project and State Water Project
- Regulate Old and Middle River (OMR) flow to protect Delta Smelt.

Climate Change Impact on SWP/CVP

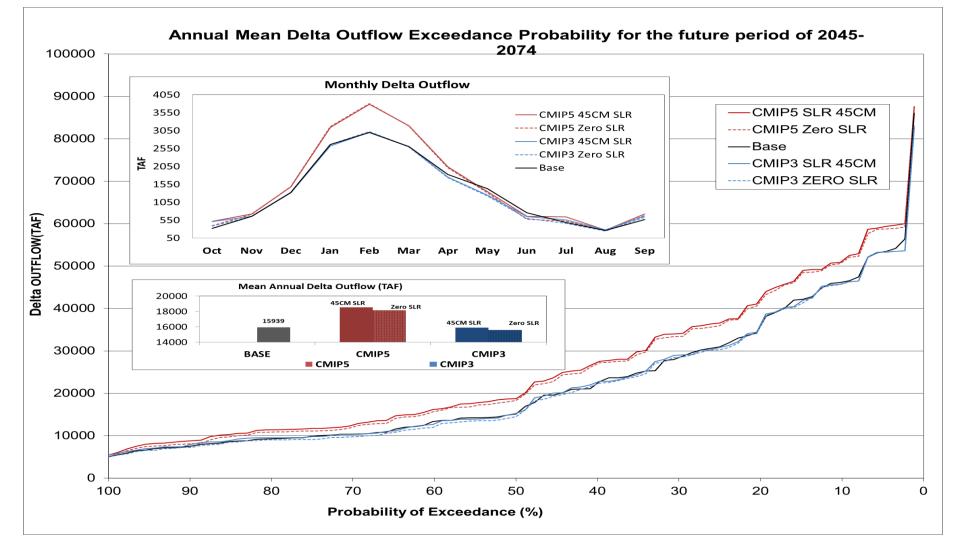
- Delta Export
- Carryover Storage
- Delta Inflow/Delta Outflow
- X2
- Dead Stoarge


Delta Export

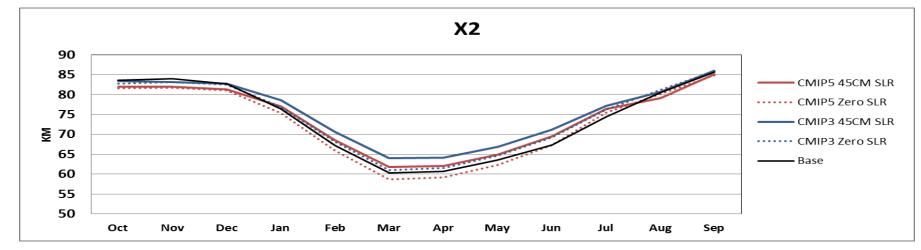
- Annual Delta export all reduced for CMIP5 and CMIP3 by -3% and -10% , respectively.
- After adding 45cm sea level rise, the export reduced by -8% and -15%, respectively.

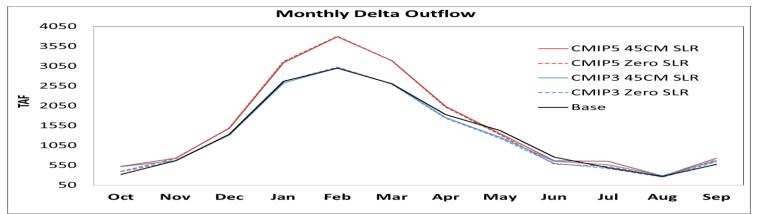

North of Delta Carryover Storage

- The carryover storage is reduced by 14% for CMIP5 and reduced by 23% for CMIP3 under 1.5ft Sea Level Rise in 2060
- The sea level rise of 1.5ft only contributes 4-5% reduction in carryover storage.


Dead Storage

- CMIP3 triggers more dead storages than CMIP5
- Sea level rise causes more dead storages
- Dead storage of Oroville reservoir in 2060 is fewest and not sensitive to SLR and CIMP3/CMIP5 due to the installation of a new low valve.
- Dead storage is more sensitive to the selection of climate model projection (CMIP3/CMIP5) than the selection of sea level rise.


Delta Outflow


- Delta outflow increase 16% in 2060 for CMIP5; No change for CMIP3
- 45cm sea level rise boosts Delta outflow by 2%
- Increased delta outflow in CMIP5 occurs in winter months mostly

Salinity in the Bay-Delta area: X2

- CMIP3 projects higher Salinity than CMIP5 in 2060 (assuming 1.5ft SLR)
- Salinity in the Bay-Delta area is more sensitive to the selection of SLR than the selection of climate model projection (CMIP3/CMIP5)

Conclusion

- The CC impact uncertainty caused by the selection of climate model projection (CMIP3 vs CMIP5) is about 7% in terms of Delta export and about 9% in terms of north of Delta carryover storage.
- The CC impact uncertainty caused by the selection of sea level rise (Zero vs 1.5ft SLR) is about 5% in terms of Delta export and about 4-5% in terms of North of Delta carryover storage.