CalSim 3.0 (Sac Valley) Model Calibration

Presenter: Idy Lui

Collaborators: Richard Chen, Liheng Zhong, Jianzhong Wang, Hongbing Yin, and Andy Draper (MWH)

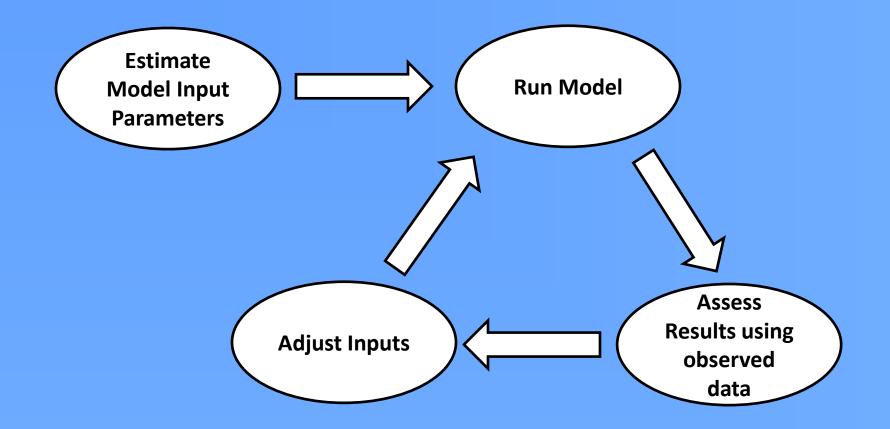
Bay-Delta Office

CA Department of Water Resources

CWEMF Annual Meeting

March 13, 2016

Background


Continuous improvement and updates have been made to CalSim 3.0 and its hydrologic pre-processor CalSimHydro, so it becomes necessary to calibrate CalSim 3.0

Calibration period: WY 1998-2007

- Actual land use data form DSWIM
- CalSim 3.0 existing LOD is using 10yr avg of 1998-2007 land use

Region: Sacramento Valley

Model Calibration Process -- 1

Model Calibration Process -- 2

Generate closure term (CT)

What is Closure Term? \rightarrow stream inflow adjustments

These inflow adjustments resulting from:

- Errors in boundary rim inflows
- Precipitation data
- Over-simplified rainfall-runoff model
- Lack of calibration data
- Errors in stream gage

What parameters to Calibrate?

1. Water use efficiency factors:

RPF -- coefficient of Riparian & Miscellaneous Evaporative Losses

- EVF -- evaporative loss fraction
- **DPF** -- deep percolation loss fraction
- LFF -- lateral flow loss fraction
- **OSF** -- canal operating spill fraction

RUFr -- Reuse factor for rice

RUFo -- Reuse factor for other crops

RUFw -- Reuse factor for wetland

GPMINF -- minimum groundwater pumping fraction

2. Curve Number

Input

- Observations:
 - Stream Flow Records
 - Diversions
 - Reservoir Storages
 - Reservoir Releases
- Model Results
 - Applied Water Demands
 - Surface Runoff
 - Tailwater/Wastewater
 - Stream Gain/Loss

Assimilated Output

- Consistent Flow Conditions:
 - Channel Flow
 - Diversions
 - Reservoir Storage
 - Reservoir Release
 - Return Flow
 - Stream Gain/Loss
 - Conveyance Losses
 - Closure Term

Input

USGS gage, CDEC gage, USBR CVO, USBR Willow Office, DWR WDL, Diversion data from SWPAO, etc

> CalSimHydro Using Historical Land Use Data

groundwater DLL in CalSim 3.0 Dynamically simulated

- Observations:
 - Stream Flow Records
 - Diversions
 - Weir Spills
 - Reservoir Storages
 - Reservoir Releases
- Model Results
 - • Applied Water Demands
 - Surface Runoff
 - • Tailwater/Wastewater
 - Stream Gain/Loss

For adjusting parameters: water use efficiency and curve number

Assimilated Output

- Consistent Flow Conditions:
 - Channel Flow ---> No Constrains

Soft Constrains w/ high penalties for summer when

- Diversions • simulate diversion is higher than Observed
- Spill from Weirs
- Reservoir Storage
- Reservoir Release
- Return Flow
- Stream Gain/Loss
- Closure Term

Soft Constrains w/ highest penalties (penalties = 99999)

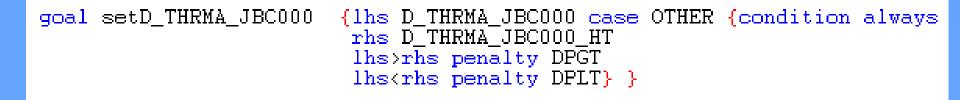
- Simulated based on reuse factor
- \rightarrow **Model Coupling Correction**

Adjust Water Use efficiency factors

So the simulated diversions will be close to observed historical diversion

CalSim 3.0 Demand Unit Balance Equations

DG+RU+GP = AW +RP +EV +DP +LF +OSF


RP	= AW*RPF	Riparian & Miscellaneous Evaporativ	e Losses
EV	= DG*EVF	Evaporative loss	
DP	= DG*DPF	Deep percolation loss	
LF	= DG*LFF	Lateral flow loss fraction	
OS	= DG* <mark>OSF</mark>	Operating spill	
RU	= Min(TW, A\	No* <mark>RUFo</mark> + AWr* <mark>RUFr</mark> + AWw* <mark>RUFw</mark>)	Reuse

GP > GPMINF * { AW + RP – RU } Minimum GW Pumping

DG = sum of all diversions to one demand unit

If the demand unit doesn't need that much water, even the simulated diversion is softly constrained to observed diversion, simulated diversion will be less than observed diversion.

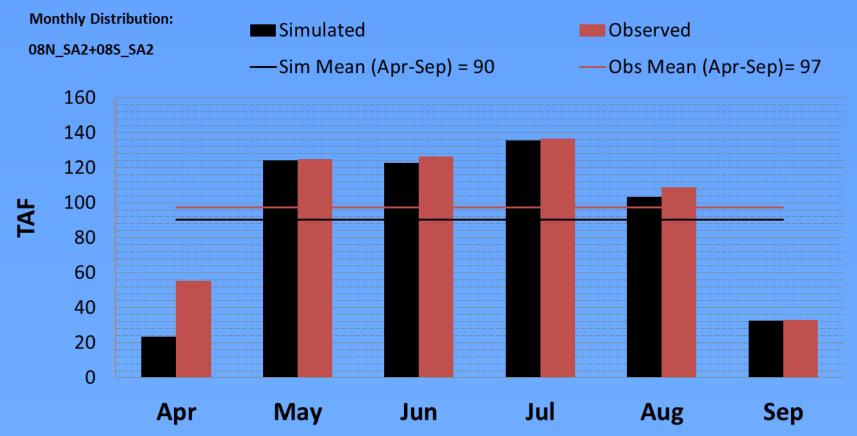
Soft Constrains with different penalties for Diversions

Adjust Water Use efficiency factors

- **RPF** -- coefficient of Riparian & Miscellaneous Evaporative Losses
- EVF -- evaporative loss fraction
- **DPF** -- deep percolation loss fraction
- LFF -- lateral flow loss fraction
- **OSF** -- canal operating spill fraction
- **RUFr** -- Reuse factor for rice
- **RUFo** -- Reuse factor for other crops
- **RUFw** -- Reuse factor for wetland

GPMINF -- minimum groundwater pumping fraction

Adjust Water Use efficiency factors Example: Glenn – Colusa ID

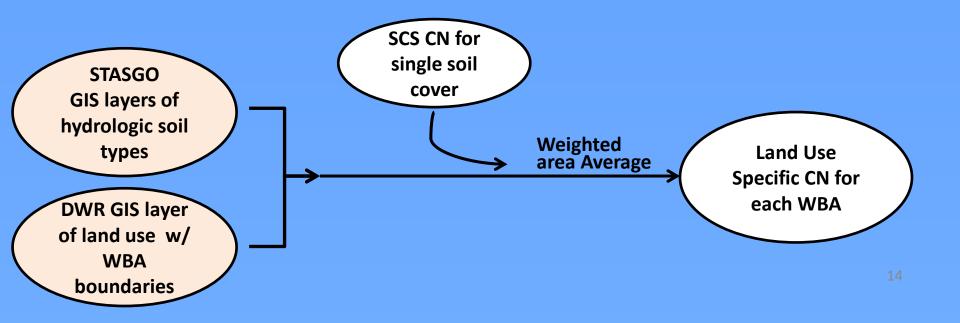

Demand Unit: 08N_SA2 and 08S_SA2

- Rice dominated --- 80% of crop land is rice (101,634Acres Rice/ 126818 Acres)
- Small private wetland 2327 Acres

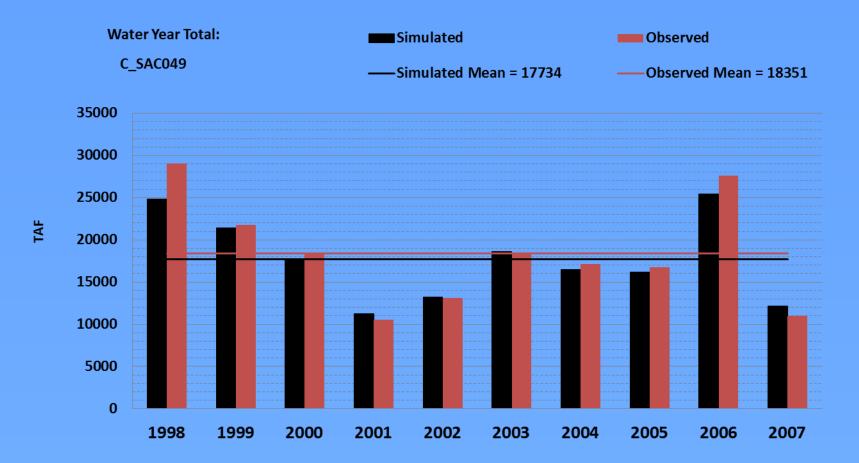
	LFF	DPF	OSF	EVF	RUFO	RUFR	RUFW	RP	MinGW
08N_SA2	0.07	0.09	0.03	0.01	0.05	0.7	0.15	0	0.04
08S_SA2	0.07	0.09	0.03	0.01	0.05	0.7	0.15	0	0.04

Adjust Water Use efficiency factors Example: Glenn – Colusa ID

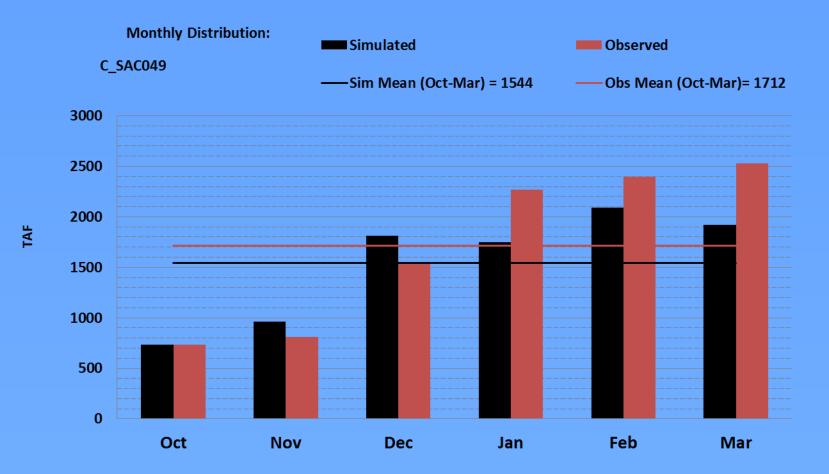
Demand Unit: 08N_SA2 and 08S_SA2 Summer (Apr – Sep) total simulated diversion = 542 TAF \rightarrow 7% less than observed Summer (Apr – Sep) total observed diversion = 585 TAF

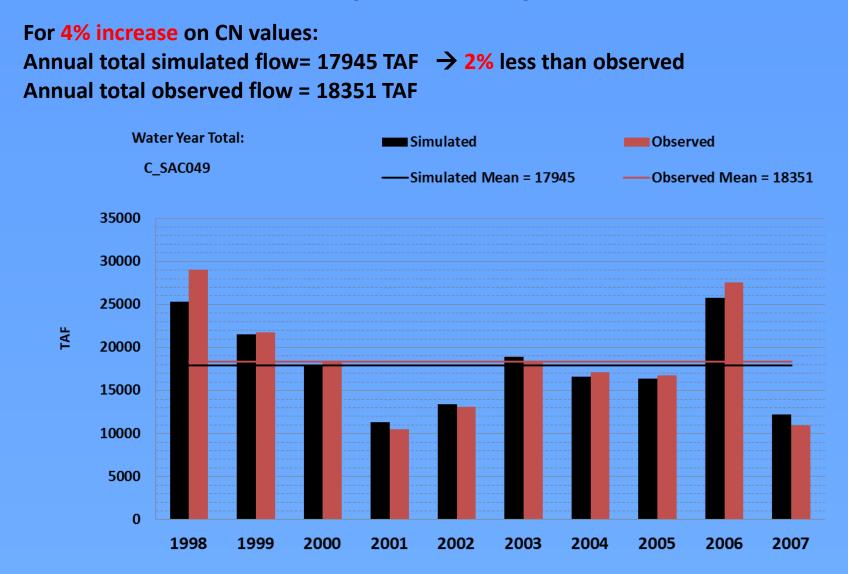


Adjust Curve Number (CN)

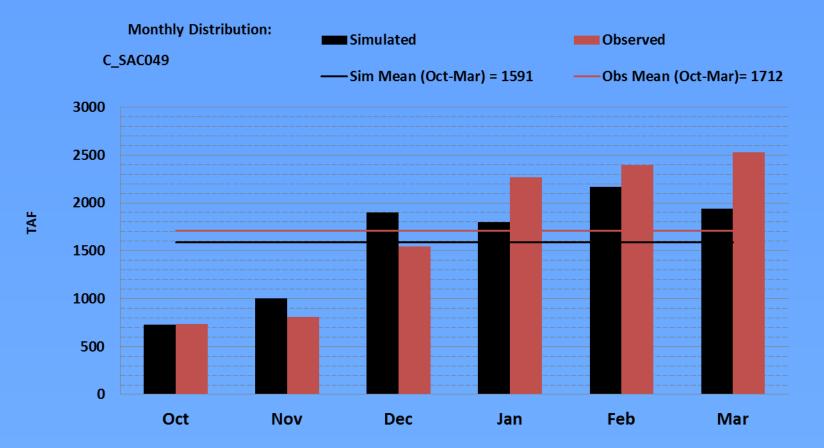

CN – Parameter in CalSimHydro Rainfall Runoff module to calculate surface runoff

- Increase CN, increase surface runoff, decrease infiltration of rain, decrease DP in Winder
- CN are Land use specific and Water Budget Area specific


How were CalSimHydro's CN values developed:



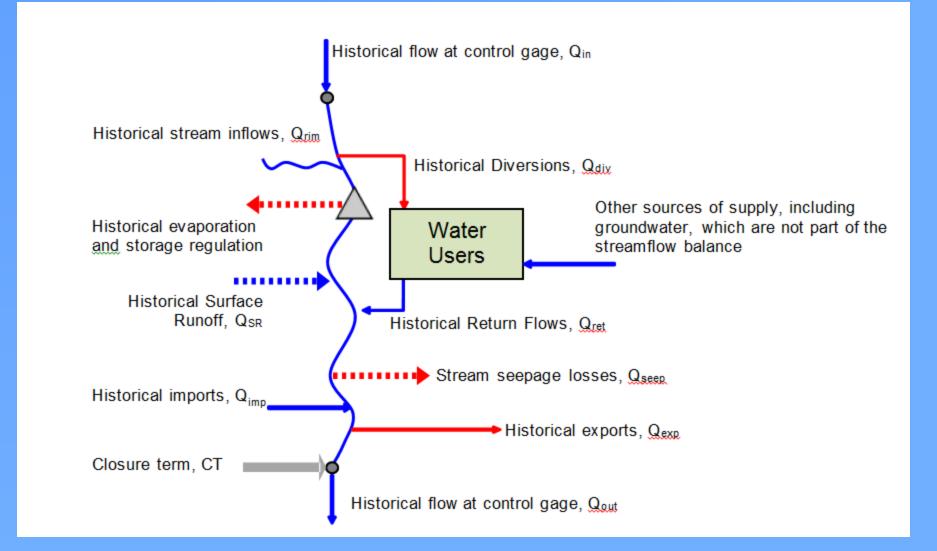
For original CN values: Annual total simulated flow= 17734 TAF \rightarrow 3% less than observed Annual total observed flow = 18351 TAF


For original CN values: Winter (Oct-Mar) total simulated flow= 9263 TAF \rightarrow 10% less than observed Winter (Oct – Mar) total observed flow = 10273 TAF

For 4% increase on CN values:

Winter (Oct-Mar) total simulated flow= 9546 TAF \rightarrow 7% less than observed Winter (Oct – Mar) total observed flow = 10273 TAF

CN Sensitivity Analysis


1								
				Mean Erro (Sim -				
				Obs)		RMSE		
#		Channel Flo 🔻	Observed Mean 💌	Original CN 🛛 💌	- 2% CN 💌	Original CN 🔻	+2% CN 🔻	+4% CN 🔻
	1	C_AMR022	1268	-29	54	53	52	49
	2	C_BRR011	214	-20	21	22	24	21
	11	C_CBD000	130	16	63	66	76	91
	12	C_CBD038	428	-146	190	178	162	141
	13	C_CCH012	363	-86	113	108	107	104
	21	C_FTR008	2990	288	343	348	355	370
	22	C_FTR051	1606	385	411	410	408	406
	23	C_FTR059	1612	383	413	413	412	411
	29	C_OROVL	1820	342	375	375	375	375
	30	C_PTH007	135	-25	27	30	32	35
	31	C_PTH024	149	-32	41	41	40	39
	33	C_SAC049	10273	-1011	1599	1506	1413	1248
	34	C_SAC081	8847	-779	1346	1263	1183	1046
	35	C_SAC097	4913	-561	705	647	593	504
	36	C_SAC120	4764	-452	617	562	510	423
	37	C_SAC146	5409	-340	551	500	453	379
	38	C_SAC169	6446	- <mark>8</mark> 3	311	282	264	257
	39	C_SAC185	6476	-96	256	223	204	203
		C_SAC201	5980	41	328	308	304	318
		C_SAC217	6189	-238	443	394	355	288
		C_SAC257	5308	-142	232	193	167	123
		C_SAC299	3455	-109	145	140	137	130
		C_SSL001	3067	-400	564	550	539	514
	57	C_YBP032	2418	536	1250	1264	1274	1277
	58	C_YUB006	878	-61	95	94	93	92
				Total RMSE	10491	9969	9530	8844

CN Sensitivity Analysis

	10 yr avg Annual (TAF)						
CS3 Water Balanace Term	- 2% CN	Original CN	+2% CN	+4% CN			
Rim Inflow	16800	16800	16800	16800			
Boundary Inflow (internal)	5557	5558	5558	5557			
Import	855	855	855	855			
Surface Runoff to Internal Stream	2101	2314	2556	2949			
Return	1895	1895	1896	1896			
Stream Gain from Groundwater	31	-99	-253	-464			
Total Inflow	27240	27322	27410	27592			
Inflow to Delta	21499	21581	21666	21849			
Diversions to WBA, export , Loss	5298	5300	5301	5304			
Reservoir ET	516	516	516	516			
Reservoir Storage Change	-73	-75	-73	-76			
Total Outflow	27240	27322	27410	27592			
Inflow	27240	27322	27410	27592			
Outflow	27240	27322	27410	27592			
Diff	0.0	0.0	0.0	0.0			

Model Calibration Process – 2 Generating Closure Term using the Data Assimilation Model

What is Closure Term? \rightarrow stream inflow adjustments

Model Calibration Process – 2 Generating Closure Term using the Data Assimilation Model

Historical Water Balance:

Closure Term =
$$Q_{out}$$
 + Q_{exp} + Q_{div} + Q_{seep} + E + $\Delta S - Q_{in} - Q_{rim} - Q_{ret} - Q_{imp} - Q_{SR}$

Same model But adding Closure Terms to the Continuity Equations

goal	continuitySAC265	{C_SAC269 + SG223_SAC265_37 + SR_03_SAC265 - C_SAC265	
goal	continuitySAC259		
goal	continuitySAC257	{C_SAC259 + SR_02_SAC257 + CT_BendBridge - C_SAC257	
goal	continuitySAC254	{C_SAC257 + SG228_SAC254_39 - C_SAC254	
goal	continuitySAC250	{C_SAC254 + SG229_SAC250_39 + C_PYN001 - C_SAC250	

Model Calibration Process – 2 **Generating Closure Term using the Data Assimilation**

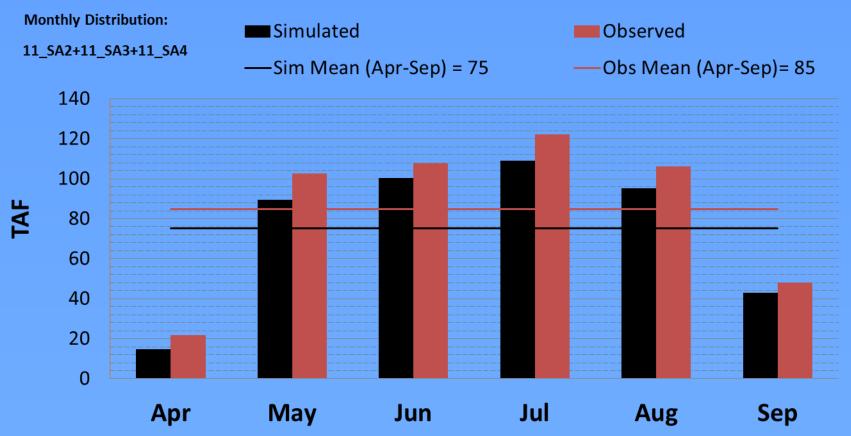
Assimilated Output

- Consistent Flow Conditions:
 - Channel Flow ----> soft Constrains w medium penalties (9999)
 - Soft Constrains w/ high penalties for summer when simulate • Diversions diversion is higher than Observed
 - Spill from Weirs
 - Reservoir Storage
 - Reservoir Release
 - Return Flow
 - Stream Gain/Loss

 - Closure Term →

- Soft Constrains w/ highest penalties (penalties = 99999)
- Simulated based on reuse factor
- → Model Coupling Correction
- - Generated as CT will complete the water balance Soft Constrain w small penalties to push CT=0

Adjust Water Use efficiency factors Example: Richvale ID; Biggs-West Gridley, Butte WD; Sutter Extension WD


Demand Unit: 11_SA2, 11_SA3, and 11_SA4

- Rice dominated --- 70% of crop land is rice (69679Acres Rice/ 98397 Acres)
- Small private wetland 2855 Acres

	LFF	DPF	OSF	EVF	RUFO	RUFR	RUFW	RP	MinGW
11_SA2	0.06	0.03	0.05	0.01	0.1	0.5	0.15	0.05	0
11_SA3	0.03	0.13	0.03	0.01	0	0.1	0.15	0.1	0.09
11_SA4	0.07	0.05	0.07	0.01	0	0.1	0.15	0.1	0.04

Adjust Water Use efficiency factors Example: Richvale ID; Biggs-West Gridley, Butte WD; Sutter Extension WD

Demand Unit: 11_SA2, 11_SA3, and 11_SA4 Summer (Apr – Sep) total simulated diversion = 452 TAF \rightarrow 11% less than observed Summer (Apr – Sep) total observed diversion = 508 TAF

