Understanding reservoir temperature dynamics with distributed| -
temperature sensing and modeling at Shasta Lake, California
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INTRODUCTION METHODS PRELIMINARY DATA

Stress on California’s salmon fisheries as a result of recent drought drives a need for Distributed Temperature Sensing Technology (Hausner et al. 2011) DTS Data Obtained
effective temperature management in California’s Sacramento River. Cool - DTS allows for high resolution temperature data along fiber optic cable * Since the deployment in August 2015, DTS has successfully captured the shift in
temperatures downstream of Shasta Dam are required for Chinook salmon spawning Temperature resolution up to 0.05°C thermal structure of the reservoir (Figure 5)
and rearing. To acquire a more complete understanding of the thermal resources - Laser pulses are sent down the cable with a known speed of light * August through September show sharp thermal stratification
available to water managers, distributed temperature sensing (DTS) technology has - Raman backscatter, a result of molecular vibrations, is measured and used *  September through November show a weakening of stratification and decline
been used at Shasta Lake in a pilot deployment from August 2015 to the present. as a proxy for temperature: of the reservoir’s thermocline
T(2) = |4 *  November to December show fall mixing and loss of stratification
Ps(z) * Late December through March show isothermal conditions
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Impact salmon >Pawning and rearing %"’a” . Figure 5: Temperature data obtained from DTS pilot installation at Shasta from August 19, 2015 through March, 2016
downstream (Bartholow etal. 2001) g Current Pilot Deployment at Shasta . (adjuste;zl for reservoir elevation). Critical temperature of 13.3°Cis shown in black. A fixed I’ength of cable is pIott’ed, SO
*  Winter-run Chinook salmon are . s Fey * DTS system installed just Vertica Pofie the water surface and the bottom of the plot move up and down as the reservoir water surface rises and falls.
considered endangered under the M Bk (e upstream of Shasta Dam |
Endangered Species Act (ESA; NMFS (Figure 3) FUTURE WO RK
2009). o DTS instrument is located
* Central Valley Regional Water Quality B inside Shasta dam < * Use high resolution data from DTS to calibrate and build a computational fluid
Control Board adopted a late N * Cable extends from the ‘ ,ﬁ?;i‘ﬂ;”e‘;{ ﬁ,ﬁ?de'b;;{ﬂ dynamics (CFD) model of the TCD intakes
summer/fall discharge temperature instrument down the side of &= Lie % " « CFD model will be built using modeling software Fluent by ANSYS
objective of 13.3°C (56°F) '“"""°"°"'°"°""<>_5:1)okm the TCD to the water (Figure 4) * Use CFD model to examine changes in reservoir dynamics as a result of dam
* Recent drought emphasizes the need Figure 1: Field site marked with a red star along the ) Fi_ber optic (_:able s 3/8” _ release operations
for efficient temperature management Sacramento River, California. (Danner et al. 2012) diameter with an outer shield * Examine lateral mixing within TCD based on the lateral position of open gates
to maintain endangered species of stainless steel braid at each level
populations * Tensile strength is ~1000lbs * Use model in a predictive mode to help inform reservoir operations for effective

temperature release for salmon spawning and rearing downstream
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* Atemperature control device (TCD) was : | [|l ’
installed in 1997 to restore and sustain | "
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