2D Modeling for the San Joaquin Basin-Wide Feasibility Study to Promote Multi-Benefit Projects

2016 CWEMF Annual Meeting Modeling Extremes: Drought to Flood and In-Betweens

Devinder S. Dhillon, P.E. California Department of Water Resources

April 2016

Background

- Central Valley Flood Protection Plan (CVFPP)
 - Framework for system-wide flood management and flood risk reduction in the Sacramento and San Joaquin River Basins
- Basin-Wide Feasibility Study
 - Evaluate the feasibility of different alternatives for improving the flood management system in both the Sacramento and San Joaquin Basins
 - Promote ecosystem enhancements and multi-benefit projects

Model floodplain inundation to assess floodplain benefits

Need for 2D Modeling

Ecosystem

 Determine additional floodplain available for fish within ecosystem restoration areas

Inundation Maps

 Develop inundation maps for evaluation of other benefits

HEC-RAS 5.0 (2D modeling capabilities)

- Detailed 2D channel modeling*
- Detailed 2D channel and floodplain modeling*
- Combined 1D channels with 2D floodplain areas*

Information and Tools used from the DWR Central Valley Floodplain Evaluation and Delineation (CVFED) Program: HEC-RAS Models and LiDAR Data

*2D Modeling Users Manual. HEC-RAS, River Analysis System, Version 5.0. August 2015.

HEC-RAS 5.0 Guidelines

Using the correct weir coefficients for Lateral Structures connected to a 2D Flow Area

Table 1. Lateral Welr Coefficients			
What is being modeled with the Lateral Structure	Description	Range of Weir Coefficients	
Levee/Roadway – 3ft or higher above natural ground	Broad crested weir shape, flow over levee/road acts like weir flow	1.5 to 2.6 (2.0 default) SI Units: 0.83 to 1.43	
Levee/Roadway – 1 to 3 ft elevated above ground	Broad crested weir shape, flow over levee/road acts like weir flow, but becomes submerged easily.	1.0 to 2.0 SI Units: 0.55 to 1.1	
Natural high ground barrier – 1 to 3 ft high	Does not really act like a weir, but water must flow over high ground to get into 2D flow area.	0.5 to 1.0 SI Units: 0.28 to 0.55	
Non elevated overbank terrain. Lat Structure not elevated above ground	Overland flow escaping the main river.	0.2 to 0.5 SI Units: 0.11 to 0.28	

HEC-RAS 2D Modeling User's Manual

HEC-RAS 5.0 Guidelines

Cell faces control flow of water from cell to cell.

Cell faces control flow of water

Water "jumping" across high ground

HEC-RAS 5.0 Guidelines

Water "jumping" across high ground

Ecosystem: River Mile 60-65

2017 ROADMAP

Ecosystem: River Mile 60-65 2D Model

Spatially Varied Manning's n

Land Cover to Manning's n (2D Flow Areas Only)

	Set Manning'sn n for Base column and override where desired in each region			
Se	Selected Area Edit Options			
Add Constant Multiply Factor		Set Values Replace		
Land Cover Name		Base		
1		0		
2	NoData	0.04		
3	Annual Grassland / Oak Savannah	0.035		
4	Developed	0.1		
5	Floodplain Agriculture	0.035		
6	Fresh Emergent Wetland	0.04		
7	Riparian Forest	0.1		
8	Riparian Scrub	0.07		
9	Seasonal Wetland	0.045		
10	Water	0.03		
11	Cropland and Pasture	0.035		
12	Marsh - non-tidal	0.045		
13	Marsh - tidal	0.045		
14	Other Natural	0.04		
15	Annual Grassland	0.035		

2017 ROADMAP

Ecosystem: River Mile 60-65 Inundation

Inundation Map: Stockton

Inundation Map: Stockton 2D Model

Original Stockton Model

Stockton 2D Model

Next Steps: Stockton 2D Model

- Move to Official Release of HEC-RAS 5.0
- Spatially Varied Manning's n
- 2D Saint Venant Equations (currently using 2D Diffusive Wave Equations)
- Calibration

Stockton 2D Model Animation

This is an extreme hypothetical event. Intended purpose is to only show flooding in the floodplain.

Other 2D Modeling Efforts

2D Modeling Efforts

- Reclamation District (RD) 17
- Butte Basin
- Yolo Bypass
- Sutter Bypass

Bottom Line

2D modeling helped model floodplain inundation and has helped evaluate floodplain benefits to promote multi-benefit projects

Acknowledgements

- Bill Fleenor, UC Davis
- Gary Brunner, HEC, USACE
- BWFS Study Team

A CONTRACTOR OF CALL O

Questions and Comments

Floodpla in Food

WBG040714003611SAC

I'm so glad we used 2D modeling. Now I can eat this floodplain food. Yum! Yum!

