Modeling Challenges for the 2015 Emergency Drought Barrier

Ming-Yen Tu and Kijin Nam

Delta Modeling Section California Department of Water Resources

> CWEMF Annual Meeting April 13, 2016

Locations Under Consideration

Forecast Modeling Process

Water Quality Results

Source: Initial Study/Proposed Mitigated Negative Declaration, Emergency Drought Barriers Project,

January 2015

Water Cost Analysis Results (TUCP July Delta Outflow)

Objective	Without Emergency Barrier	Emergency Barrier	NDO Difference (positive indicates water savings with barrier)
Emmaton	4080 cfs	4000 cfs	80 cfs
Threemile Slough	3430 cfs	3360 cfs	70 cfs
NDO Difference (positive indicates water savings with modified objective)	650 cfs	640 cfs	

Note:

- TUCP: Temporary Urgency Change Petition.
- Results above were under the modified Rio Vista outflow condition.

Water Cost Saving and Salinity Relationship

Acknowledgements

Operations and Maintenance

- James Edwards, Reza Shacheraghi, Siqing Liu, Dan Yamanaka, Aaron Miller.
- Delta Modeling Section
 - Eli Ateljevich, Bob Suits, Nicky Sandhu, Tara Smith.

SCHISM

- Bay-Delta SCHISM
 3D
 - Farallones to Knights
 Landing and Vernalis
 - 3 years of production use
 - Flow, salinity, temperature ...

http://baydeltaoffice.water.ca.gov/modeling/deltamodeling/models/bay_delta_schism/ http://ccrm.vims.edu/schism/

Salinity Propagation

Tidal Pumping: SalinityNo BarrierBarrier

Flood

Ebb

Bay-Delta SCHISM Model, Low NDOI Forecast

Mixing @ Franks Tract

The barrier changes mixing pattern.

Salinity through the Corridor

Monitoring: Flow Measurement

Model can provide insight for monitoring.

Webb Tract 2026

Monitoring Hotspot Franks Tract and the Old River

Red: Field observation, White: Model

Change of Velocity Around Bradford

Model can estimate changes in velocity by a project.

Abutment: Flow Pattern

Model can estimate local changes in flow.

What we learned

- Drought condition = Unique
 - Unusually low pumping
 - Salt Intrusion
 - Emergency Drought Barrier: Timing
 - Mixing
 - Uncertainty
- Values of 2D & 3D
 - Estimation/Hindcast

Acknowledgements: SCHISM

- Delta Modeling Section
 - Eli Ateljevich, Jon Shu, Rueen-Fang Wang
- Virginia Institute of Marine Science
 - Joseph Y. Zhang