Water Temperature Transaction Tool (W3T)

Michael Deas, Ph.D., P.E.

Watercourse Engineering, Inc. 424 Second Street, Suite B Davis, CA 95616

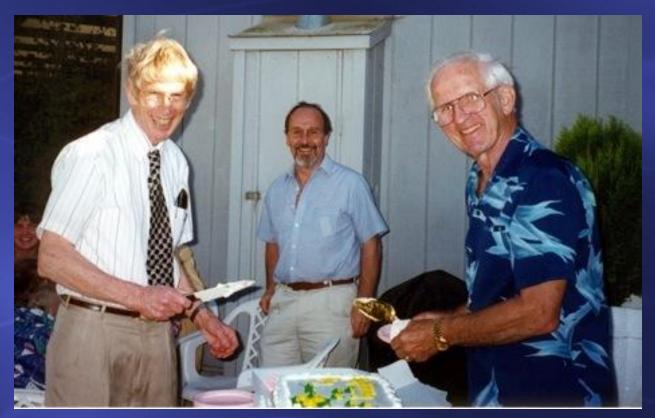

March 9, 2015

Outline

- Recognitions
- Some thoughts on "simple" models
- Development of an equilibrium temperature approach

Recognitions

• CWEMF

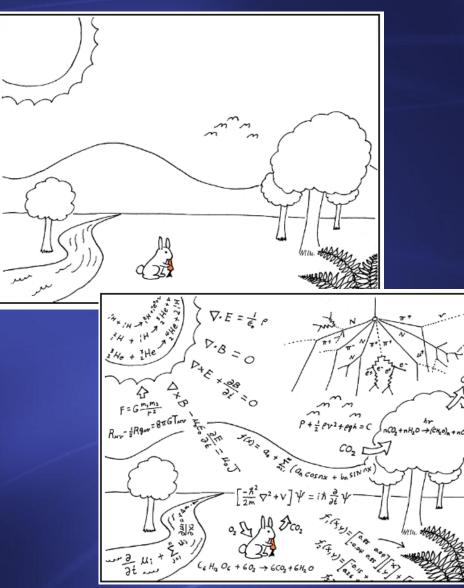


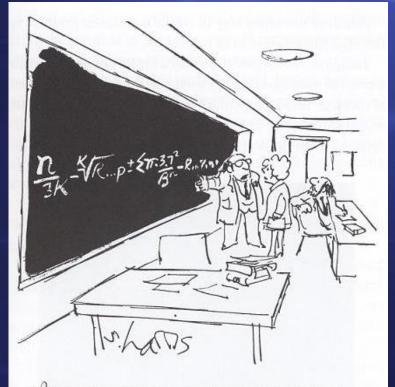
 Mission: To increase the usefulness of models for analyzing California's water- and environmental related problems

A few special people

Recognitions

• A few special people




Ray Krone

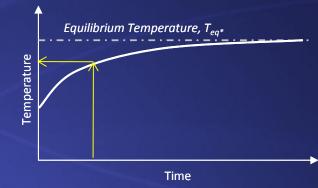
lan King

Jerry Orlob

Communicating Results

"BUT THIS IS THE SIMPLIFIED VERSION FOR THE GENERAL PUBLIC."

The Modeling Process (simplified)

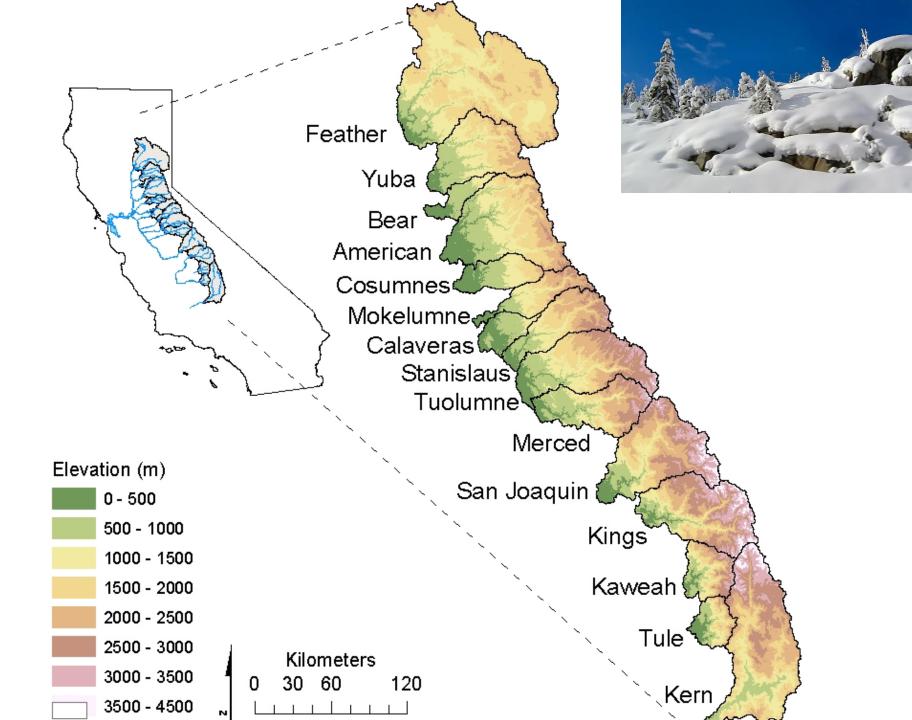


Evolution of Equilibrium Temperature Modeling

- What is Equilibrium Temperature?
- Sierra Nevada Application: RTEMP
- Water Temperature Transaction Tool: W3T

Equilibrium Water Temperature Modeling

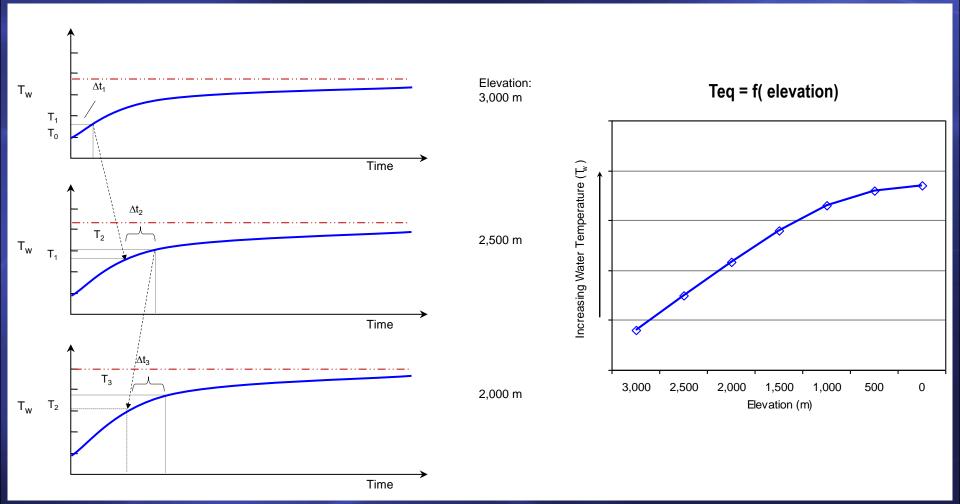
Theoretical Equilibrium Water Temperature (T_{eq(theory)})

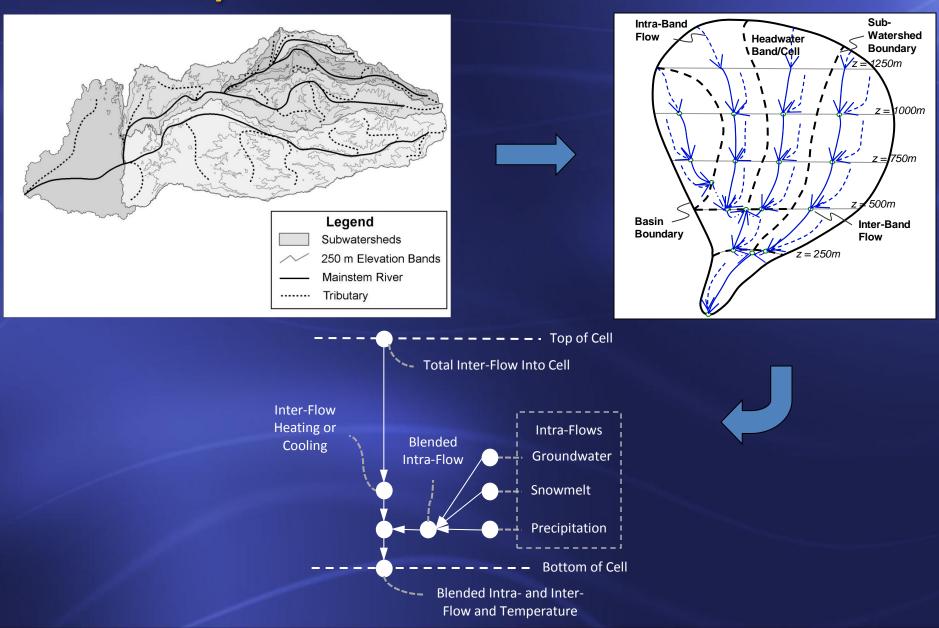

$$Q_n = (Q_{sw} + Q_{atm} - Q_b - Q_l + Q_s) + Q_b = 0$$

Dynamic Equilibrium Water Temperature (T_{eq})

$$\frac{dT}{dt} = \frac{Q_n A}{\rho C_p V}$$

Sierra Nevada: RTEMP

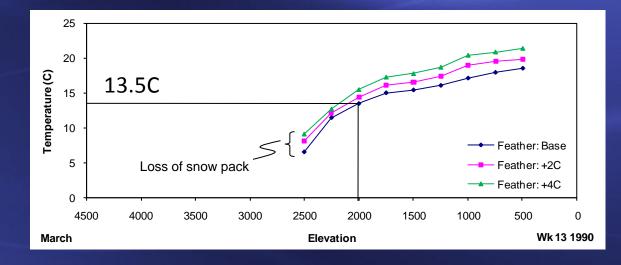

- Objective: Develop a Sierra Nevada-scale water temperature model capable of:
 - Assessing implications of climate change under unimpaired and an impaired hydrologic settings
 - Encompassing a large spatial area (western slope of the Sierra Nevada)
 - Providing sufficient temporal resolution to describe sub-monthly water temperature response

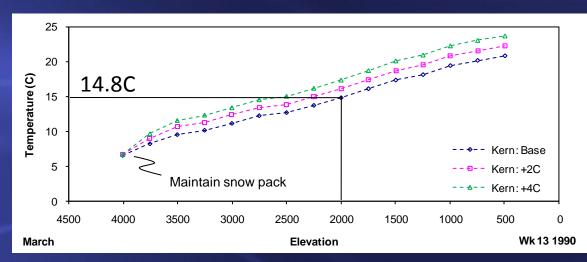

Conceptual Model

- Track water in individual reaches from the Sierra Nevada crest to the Central Valley
- "Map" the history of this as:
 - Waters seek T_{eq} in respond to local meteorological conditions (elevation bands or cells)
 - Adjust water temperature in response to deviations from T_{eq} curve (e.g., snowmelt, colder or warmer tributaries, groundwater contributions)

Representing Water Temperature in Space and Time

Representative Watershed

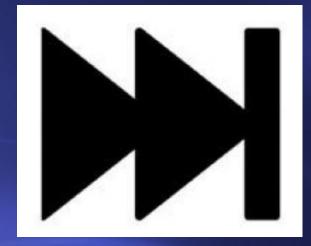

Initial Application


- Based on output from a WEAP model of the Sierra Nevada
 - Unimpaired hydrology (no infrastructure)
 - 20 water years (WY1981 WY2001), Δt = weekly
 - 15 river basins (Feather, Yuba, Bear, American, Cosumnes, Mokelumne, Calaveras, Stanislaus, Tuolumne, Merced, San Joaquin, Kings, Kaweah, Tule, and Kern)
- Climate change: 2°C, 4°C, and 6°C increase in air temperature uniformly applied throughout domain

Feather & Kern Comparison

• Feather

• Kern



Conclusions

- Despite several assumptions (simplified geometry, snow coverage, groundwater temperatures, etc.) the model provided valuable insight into climate change dynamics under an unimpaired condition.
- The equilibrium approach was an effective simplification that allowed range-scale simulation of sub-monthly water temperature over an extended time series:
 - 20 yrs
 - 15 basins
 - Weekly time step

Simulation Time: 15 minutes

• Fast forward a few years

Water Temperature Transactions Tool (W3T)

- NFWF Conservation Innovation Grant to target <u>flow</u> <u>transactions</u> that included a water quality element
- <u>Objective</u>:

Develop a <u>transparent</u> and <u>easy to use</u> tool to explore <u>flow transactions</u> and their potential <u>temperature impacts</u>.

Technical Elements of Model Development and Use

- Heat Budget
- Advection of thermal energy

 Lagrangian assumption
- Data Needs
- Model Outputs
 - Graphical
 - Tabular
- Model Calibration and Testing
- Excel based (VBA)


Flow Representation

Basic Assumptions

Steady flow based on Manning's equation

$$Q = uA = \frac{1.49}{n} AR^{0.66} S^{0.5}$$

River reach representation and flow balance

Flow Balance: 5 cfs ------ 13 cfs ------ 15 cfs ------

Flow Representation

 Basic Flow Approach: steady, uniform flow on a reach basis – Manning Equation

$$Q = uA = \frac{1.49}{n} AR^{0.66} S^{0.5}$$

Q – flow (cfs)

Q_{div}

Qds

- n channel roughness
- A cross section area (ft²)
- R hydraulic radius (ft), where R = A/P
 - P-wetted perimeter (ft)

Reach-by-reach

specification of Stream attributes

- S channel slope (ft/ft)
- Mass balances at the confluences
 - Tributary or inflow: $Q_{ds} = Q_{us} + Q_{trib}$
 - Diversion or outflow: Q_{ds} = Q_{us}-Q_{div}

Qus

Flow and Temperature in Streams

 Basic heat budget (e.g., Heat Source, QUAL2K, others)

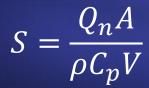
$$Q_n = (Q_{sw} + Q_{atm} - Q_b - Q_l + Q_s) + Q_b$$

Q_{sw}

Q_{atm}

 Q_{b}

- Q_n Net heat flux
- Q_{sw} Shortwave radiation (solar)
- Q_{atm} Longwave atmospheric radiation
- *Q_b* Longwave water body radiation
- Q_l Latent heat flux
- Q_s Sensible heat flux
- *Q_{bed}* Bed conduction


Flow and Temperature in Streams

Area, A

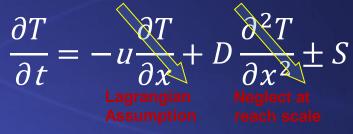
 Fate and Transport: advection-diffusion equation (onedimensional, laterally and depth averaged formulation)

$$\frac{\partial T}{\partial t} = -u\frac{\partial T}{\partial x} + D\frac{\partial^2 T}{\partial x^2} \pm S$$

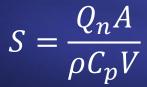
- *T* water temperature
- *t* time
- *u* velocity
- *D* diffusion
- *S* sources/sinks
- Q_n net heat flux

- *A* surface area
- ρ density
- C_p specific heat
- V volume

Velocity, u


Volume, V

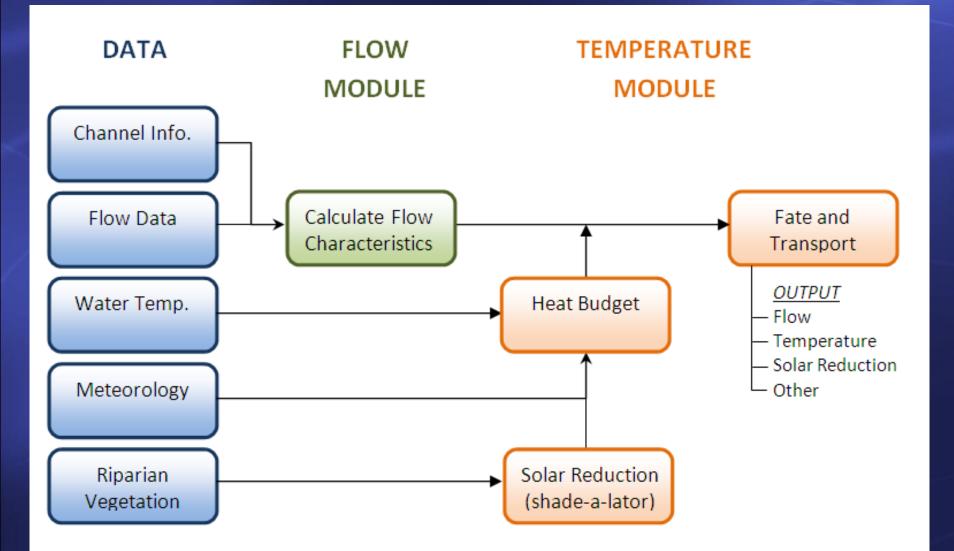
X


Flow and Temperature in Streams

Area, A

• Fate and Transport: advection-diffusion equation (onedimensional, laterally and depth averaged formulation)

- *T* water temperature
- *t* time
- *u* velocity
- *D* diffusion
- *S* sources/sinks
- Q_n net heat flux


- *A* surface area
- ρ density
- C_p specific heat
- V volume

Velocity, u

Volume, V

X

W3T Model Structure

Key Model Inputs

 Model can account for key processes affecting water temperature in aquatic systems.

Inflow (Q)

- Can assess:
 - Flow (diversions/inflows)
 - Water temperature of inflows
 - Stream Morphology
 - Meteorology (sub-daily)
 - Stream shade

Stream flow (Q)

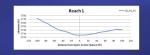
— Inflow (Q)

- Model can account for actual processes affecting water temperature in aquatic systems.
- Can assess:
 - Flow (diversions/inflows)
 - Water temperature of inflows
 - Stream Morphology
 - Meteorology (sub-daily)
 - Stream shade

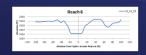
Inflow (Q, T) \longrightarrow

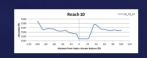
Stream flow (Q, T)

— Inflow (Q, T)

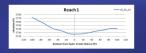


 Model can account for actual processes affecting water temperature in aquatic systems.

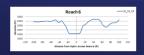

Inflow (Q, T)


- Can assess:
 - Flow (diversions/inflows)
 - Water temperature of inflows
 - Stream Morphology
 - Meteorology (sub-daily)
 - Stream shade

Stream flow (Q, T)

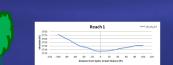


- Model can account for actual processes affecting water temperature in aquatic systems.
- Can assess:
 - Flow (diversions/inflows)
 - Water temperature of inflows
 - Stream Morphology
 - Meteorology (sub-daily)
 - Stream shade



Inflow (Q, T)

Stream flow (Q, T)

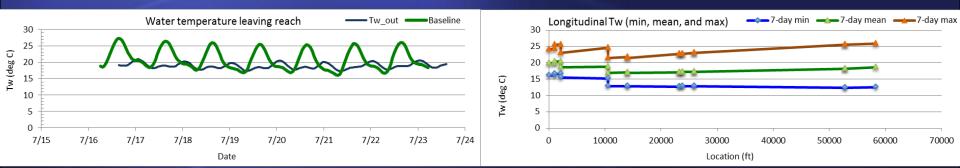


 Model can account for actual processes affecting water temperature in aquatic systems.

Inflow (Q, T)

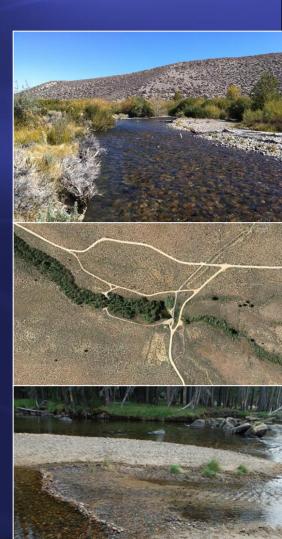
- Can assess:
 - Flow (diversions/inflows)
 - Water temperature of inflows
 - Stream Morphology
 - Meteorology (sub-daily)
 - Stream shade

Stream flow (Q, T)



fl∩w

Stream


W3T Output

- Hourly time series data upstream and downstream
 Biological Tw metrics (7DADA, 7DADM, etc.)
- Baseline versus "scenario" comparison
- Longitudinal profile (reach specific conditions)
- Solar radiation reduction (shade)
- Tabulated data summary
- Multiple sheets summarizing results to provide transparency and verification

W3T Model Elements: Summary

- Model incorporates key processes affecting water temperature in aquatic systems
 - <u>Heat transfer (Heat budget)</u>
 - <u>Stream shade elements</u> (Vegetation/topo)
 - <u>Morphology</u>/geometry (A_{surface}, V)
 - Flow and Temperature
 - Impacts of flow changes (thermal mass)
 - Transport of heat energy
 - Assessment of cold/warm water additions
 - Modified operations/land use
 - Sub-daily temperature (hourly)
- Temperature effects of flow transactions can be effectively quantified for a range of conditions

Conclusion

- Detailed spatial and temporal models have high value, but can be computationally intensive and difficult for parties to understand.
- Faced with different/specific objectives, simplified models can be developed to provide:
 - Longer time series versus detailed simulations for a selected few years (e.g., wet, dry, normal)
 - Short simulation times, allowing for many simulations to be completed
 - Gain wider use and acceptability because they are transparent, simple, and accessible

