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Outline

* Recognitions
 Some thoughts on “simple” models

 Development of an equilibrium temperature
approach



Recognitions

— Mission: To increase the usefulness of models for
analyzing California’s water- and environmental
related problems

* A few special people
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Communicating Results
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The Modeling Process (simplified) =




Evolution of Equilibrium Temperature
Modeling

 What is Equilibrium Temperature?
e Sierra Nevada Application: RTEMP
 Water Temperature Transaction Tool: W3T



Equilibrium Water Temperature
Modeling

* Theoretical Equilibrium Water Temperature (T.qheory))

Equilibrium Temperature, T,

Qn = (st+Qatm_Qb_Q|+Qs)+Qb:O

Temperature

Time

* Dynamic Equilibrium Water Temperature (T,,)
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Sierra Nevada: RTEMP

* Objective: Develop a Sierra Nevada-scale
water temperature model capable of:

— Assessing implications of climate change under
unimpaired and an impaired hydrologic settings

— Encompassing a large spatial area (western slope
R ENEHEREECE)

— Providing sufficient temporal resolution to
describe sub-monthly water temperature
response
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Conceptual Model

* Track water in individual reaches from the
Sierra Nevada crest to the Central Valley

e “Map” the history of this as:
— Waters seek T, in respond to local meteorological

conditions (elevation bands or cells)

— Adjust water temperature in response to
deviations from T, curve (e.g., snowmelt, colder

or warmer tributaries, groundwater contributions)



Representing Water Temperature In
Space and Time

Elevation: .
3,(%8 Incin Teq = f( elevation)

Increasing Water Temperature (T, )
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Representative Watershed
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Initial Application

e Based on output from a WEAP model of the
Sierra Nevada

— Unimpaired hydrology (no infrastructure)
— 20 water years (WY1981 - WY2001), At = weekly

— 15 river basins (Feather, Yuba, Bear, American, Cosumnes,
Mokelumne, Calaveras, Stanislaus, Tuolumne, Merced, San
Joaquin, Kings, Kaweah, Tule, and Kern)

* Climate change: 2°C, 4°C, and 6°C increase in
air temperature uniformly applied throughout
domain



Feather & Kern Comparison

e Feather
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Conclusions

e Despite several assumptions (simplified
geometry, snow coverage, groundwater
temperatures, etc.) the model provided valuable
insight into climate change dynamics under an
unimpaired condition.

* The equilibrium approach was an effective
simplification that allowed range-scale simulation
of sub-monthly water temperature over an
extended time series:

— 20 yrs J
— 15 basins —  Simulation Time: 15 minutes
— Weekly time step

—



e Fast forward a few years




Water Temperature Transactions Toou
(W3T)

e NFWF Conservation Innovation Grant to target flow
transactions that included a water quality element

e Objective:

Develop a transparent and easy to use tool to
explore flow transactions and their potential
temperature impacts




Technical Elements of Model y

Development and Use

Heat Budget
Advection of thermal energy

— Lagrangian assumption
Data Needs

Model Outputs

— Graphical

— Tabular

Model Calibration and Testing
Excel based (VBA)




Flow Representation

* Basic Assumptions

— Steady flow based on Manning’s equation
1.49
Q = ud = TARO.6650.5

— River reach representation and flow balance
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Flow Representation

e Basic Flow Approach: steady, uniform flow on

a reach basis — Manning Equation

Q — flow (cfs)
1.49 n — channel roughness
Q = ARO 6650 5 A — cross section area (ft?)
n R — hydraulic radius (ft), where R = A/P
P — wetted perimeter (ft)
S — channel slope (ft/ft)

— Mass balances at the confluences
* Tributary or inflow: Qg , = Q,+Qy;p
* Diversion or outflow: Q, = Q,.-Q;,

*
l Qaiv Reach-by-reach

Qus Qs specification of

— Stream attributes



Flow and Temperature in Streams

e Basic heat budget (e.g., Heat Source, QUAL2K,
others)

Qn - (st+ Qatm X Qb _ Ql T Qs) t Qb

* Q,— Net heat flux
* Q,,— Shortwave radiation (solar)
. — Longwave atmospheric radiation
Qotm — LONgWaV ERcaton o Q. Q Q

* Q, — Longwave water body radiation A EC 0o
* Q,- Latent heat flux S
A\ ¥

* Q.- Sensible heat flux
2 bed

* Q,.4— Bed conduction :




Flow and Temperature in Streams

e Fate and Transport: advection-diffusion equation (one-
dimensional, laterally and depth averaged formulation)
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Flow and Temperature in Streams

e Fate and Transport: advection-diffusion equation (one-
dimensional, laterally and depth averaged formulation)
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W3T Model Structure

DATA FLOW TEMPERATURE
MODULE MODULE

[ Channel Info.

Flow Data | Calculate Flow ] Fate and
Characteristics J T Transport

[ Water Temp. { Heat Budget ] %PUT
— Temperature

A — Solar Reduction
[ Meteorology — Other

.

Riparian »| Solar Reduction
Vegetation (shade-a-lator)

.




Key Model Inputs

* Model can account for key processes affecting

water temperature in aquatic systems.

Stream flow (Q)
e Can assess:

— Flow (diversions/inflows)

— Water temperature of inflows Lt
— Stream Morphology
— Meteorology (sub-daily) ™"
U GCEIMUERE
Outflow (Q)

Stream flow (Q)



Key Model Elements

 Model can account for actual processes affecting

water temperature in aquatic systems.

Stream flow (Q, T)
e Can assess:

— Flow (diversions/inflows)

— Water temperature of inflows SR R
— Stream Morphology
— Meteorology (sub-daily) ™" (@D
U GCEIMUERE
Outflow (Q)

Stream flow (Q, T)
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Key Model Elements
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W3T Output

* Hourly time series data — upstream and downstream
— Biological Tw metrics (7DADA, 7DADM, etc.)

e Baseline versus “scenario” comparison

e Longitudinal profile (reach specific conditions)
e Solar radiation reduction (shade)

 Tabulated data summary

 Multiple sheets summarizing results to provide
transparency and verification
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.

W3T Model Elements: Summary

* Model incorporates key processes affecting
water temperature in aquatic systems
— Heat transfer (Heat budget)

— Stream shade elements (Vegetation/topo)

— Morphology/geometry (A, facer V)

— Flow and Temperature

* Impacts of flow changes (thermal mass)

Transport of heat energy

Assessment of cold/warm water additions

Modified operations/land use

Sub-daily temperature (hourly)

 Temperature effects of flow transactions can
be effectively quantified for a range of
conditions




Conclusion

* Detailed spatial and temporal models have high value, but can
be computationally intensive and difficult for parties to
understand.

* Faced with different/specific objectives, simplified models can
be developed to provide:

— Longer time series versus detailed simulations for a selected few years
(e.g., wet, dry, normal)

— Short simulation times, allowing for many simulations to be completed

— Gain wider use and acceptability because they are transparent, simple,
and accessible




