Modeling seasonal nutrient transformations and losses in the Delta:

Project findings on the effects of using time-and-space-varying DICU concentrations in DSM2 V8.1.2

Marianne Guerin
Associate, Resource Management Associates
February, 2013
Funding and Acknowledgements:

• Project funded through IEP/DWR

• Acknowledgments to co-PI’s and collaborators:
 • David Senn (lead-PI) and Emily Novick from SFEI
 • Carol Kendell (PI) and Megan Young from USGS

• Thanks to Nicki Sandhu, DWR-DMS, for increasing the # of allowable QUAL input variables (> 250 DICU locations, 10 constituents in QUAL-nutrient)
IEP Project Background

• Project goal is to quantitatively explore the role the Delta plays in transforming, assimilating, and removing nutrients (ammonium, nitrate, phosphate):
 • To inform important/potentially costly management decisions aimed at reducing nutrient loads to the Delta and Suisun Bay

• By synthesizing:
 • Long-term nutrient-related monitoring data from DWR-EMP sites within the Delta (1975-2011 or 2012)
 • Existing stable isotope data from 2005-2012
 • Results from DSM2 hydrodynamic and water quality models

• Specific outcomes:
 • Quantify nutrient loads to the Delta and loads from the Delta to Suisun Bay
 • Identify long-term and seasonal trends in nutrient forms (e.g., NH4 vs. NO3), concentrations, and ratios, and explore the factors contributing to spatial, seasonal and temporal variability
 • Identify additional monitoring and special studies needed to address critical data gaps.
 • Refine QUAL nutrient model calibration using stable isotope and nutrient measurement data to constrain QUAL parameters
Work to date:

• Senn and Novick have calculated mass balances of selected nutrient entering and leaving Delta

• DSM2:
 • Ported nutrient model (1990 – 2008) to Version 8.1.2
 • Split DSM2 into pre- and post-Liberty grids *
 • Implemented spatially and temporally-varying DICU nutrient concentration *
 • Delivered preliminary results to SFEI to use in load calculations
DICU Regions

DICU has 3 components:
Drain, Seep and Diversion

Drainage is the component from the Delta islands back into Delta waters

Analysis of drain nutrient concentrations compiled in DWR report to give monthly-varying concentrations in 3 regions:

Representative Delta Island Return Flow Quality for Use in DSM2 Memorandum Report, May 1995. Modeling Support Branch, Division of Planning, DWR.

We’ll look at examples from Mildred, Franks Tract, RSAC101 and RMID023.

Summarize at D-16 and P8, EMP locations
Black dashed lines are the previous constant concentration values; new values - Blue is North, Red is South East and Green is West
Findings Using Time-varying DICU vs. Constant

• Seasonal changes by region were as expected – higher where the time-varying DICU constituent was higher, and lower where it was lower

• Changes in the Southeast region were greatest as percent differences on monthly average model output

• Example % Diff (Constant – Monthly) at D16-EMP:
 • Modeled algae spikes up to 30% difference, frequently 10 %
 • NH3 +/- 10% difference

• Example % Diff (Constant – Monthly) at P8-EMP:
 • Modeled algae spikes at 20% difference seasonally
 • Modeled Organic-N spikes at -10 to -20% difference seasonally
The Effect of Liberty Island on Nutrient Cycling

• Levee failed in 1995, then was repaired
• Levee failed again in 1997, and was NOT repaired
• Two DSM2-HYDO scenarios:
 • Grid without Liberty Island, 1990 – 1998 (assumed time for 100% flooding, changes to bathymetry)
 • Grid with flooded Liberty, 1999 – 2008
• Stage and flow compared for years when both models were run (1995-1999) show that neither model does significantly better at matching flow at Rio Vista
• With better information, can easily change timing on scenarios
Liberty Scenario Comparisons w/new DICU – Nutrient Concentrations Downstream of Liberty

• Comparisons 1996 – 1999, all Wet water year types

• Both scenarios have the time-varying DICU concentrations

• Liberty Island has a significant effect on seasonal nutrient concentrations

• Next few slides give local effects of increased residence time of waters downstream of Liberty Island at Rio Vista
Liberty Increases Algae

Liberty Decreases NO3

Liberty Increases Organic-N

Liberty Decreases NH3
Atmosphere - Exchange Heat and O\(_2\), Pressure Influences DO Saturation in Water

Water – Depth Influences Sediment

NH\(_3\), NO\(_2\), NO\(_3\), Dissolved Oxygen, Algal Settling

Organic-N

NH\(_3\), NO\(_2\), NO\(_3\)

Chlorophyll-a (Algae)

Organic-P

Dissolved-P

Sediment – Supplies Dissolved-P, NH\(_3\) to Water

Receives Algae, CBOD, Organic-N; Uses O\(_2\)

Bacterial Decay

Respiration

Oxidation

Growth+Photosyn

Benthic Source, Demand

Settling

Mortality

Simplified story – Algae consume NO\(_3\) and NH\(_3\) and Algae die to produce Organic-N
Next steps in the IEP Project for DSM2

• Use stable isotope and nutrient concentration data to constrain some boundary conditions and parameters in QUAL-nutrient
 • Extend the nutrient model past 2008 (2011/2-12)

• Isotopes act as a tracer
 • Isotopic ratios can identify the source of a constituent as agricultural vs. waste water
 • Isotopic information used in transects can identify the fate of constituents through time

• Rate parameters – nutrient concentration data can help identify the correct process leading to changes in nutrient concentrations

• Use the refined calibration to investigate trends in nutrient concentrations
 • Spatially and seasonally
 • As influenced by hydrodynamic conditions
Carol Kendall (USGS) plot illustrates the cycling of nutrients at Rio Vista and near the confluence of the Sacramento and San Joaquin Rivers – increased residence time in open water areas, additional sources
<table>
<thead>
<tr>
<th>Tracer type</th>
<th>Interpretive value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate organic matter (POM)</td>
<td>δ¹⁵N, δ¹³C, δ³⁴S, C:N, C:S information about the source of the C, N, and S -- and the biogeochemical reactions that cycle the elements -- even after incorporation into algal biomass; quantify algal vs terrestrial contributions to biomass; use for calculation of phytoplankton isotopic composition; evaluate role of algal-based foodwebs, contributions of marine-derived sources of POM and nutrients.</td>
</tr>
<tr>
<td>Nitrate δ¹⁸O and δ¹⁵N</td>
<td>quantify nitrate from different sources (fertilizer, wastewater, wetlands, etc); role in the production of algae, and degree of recycling; evidence for denitrification or assimilation.</td>
</tr>
<tr>
<td>Ammonium δ¹⁵N</td>
<td>quantify ammonium from different sources (fertilizer, wastewater, wetlands, etc); role in the production of algae, and degree of recycling; evidence for nitrification or assimilation.</td>
</tr>
<tr>
<td>Water δ¹⁸O and δ²H</td>
<td>ideal conservative tracer of water sources and mixing; useful for quantifying flow contributions from different tributaries and groundwater.</td>
</tr>
<tr>
<td>Dissolved organic carbon (DOC) δ¹³C</td>
<td>information on sources of DOC; evidence for degradation of organic matter; quantify algal vs terrestrial contributions to DOC.</td>
</tr>
<tr>
<td>Dissolved organic matter (DOM) δ¹⁵N, δ¹³C, δ³⁴S, C:N, C:S</td>
<td>information about the source of the C, N, and S -- and the biogeochemical reactions that cycle the elements -- even after incorporation into bacteria biomass; quantify algal vs terrestrial contributions to DOM; use for calculation of bacteria isotopic composition; evaluate role of microbial foodweb, contributions of marine-derived sources of POM and nutrients.</td>
</tr>
<tr>
<td>Dissolved inorganic carbon (DIC) δ¹³C</td>
<td>information on sources of DIC; evidence for in situ algal productivity; evidence for degradation of organic matter, degree of gas exchange with atmosphere, nitrification.</td>
</tr>
<tr>
<td>Dissolved Oxygen (DO) gas δ¹⁸O</td>
<td>information about the ratio of productivity to respiration in the water column, source of the O₂, degree of gas exchange with atmosphere, biological oxygen demand (BOD) mechanism.</td>
</tr>
<tr>
<td>Sulfate δ³⁴S and δ¹⁸O</td>
<td>quantify sulfate from different sources (soil, wastewater, wetlands, etc), source of algae, and extent recycling.</td>
</tr>
<tr>
<td>Phosphate δ¹⁸O</td>
<td>quantify phosphate from different sources; information about the extent of algal production, recycling of material within the river reach, and P limitation.</td>
</tr>
</tbody>
</table>
Thanks for your attention!