Delta Ecosystem Diagnosis & Treatment: A Tool for Restoration Planning

Chip McConnaha
Rick Wilder
Jesse Schwartz
Pat Crain
Marin Greenwood
Karl Dickman
What is Delta-EDT?

• Definition: A spatial habitat assessment model focused on population performance of delta smelt
• Purpose: Guide restoration of habitat in the delta
• Value: Evaluation of habitat relative to delta smelt life history tactics
• Approach
 – Integrate knowledge
 – Develop scientific hypotheses
 – Assess limiting factors
 – Support adaptive management
• Delta EDT is NOT:
 – A hydrological model (though it uses hydrologic data)
 – A particle tracking model (though it uses PTM output)
 – A time series model (though it evaluates habitat through time)
 – A statistical model (though it does have variation)
 – An HSI model (though they have traits in common)
Delta-EDT Components

- Biology: Species Description
- Life History Trajectories
- Environment: Environmental Description
- Species-Habitat Rules
- Performance Estimate
- Diagnosis

http://edt.codeplex.com/
Delta-EDT Environment-Spatial/Temporal Structure

• Built on DSM2 reaches
 – Reach-node network
 – “Pixel” of environmental picture

• Monthly time-step
 – Characterization of conditions over a month
1-Year life history used (for now)

Habitat along each trajectory evaluated using Beverton-Holt population metrics

- **Capacity** (fish) ➔ quantity of suitable habitat + **Food**

- **Productivity** (returns/spawner) is density-independent survival ➔ quality of habitat

- Population BH function disaggregated to life stages

- Each trajectory has unique capacity and productivity reflecting habitat conditions ➔ **Life History Diversity**
Habitat is Evaluated Across Numerous Life History Trajectories

Integration across trajectories ➔ Population performance
Trajectory Performance
Delta-EDT Information Structure

Input Data

Habitat Quality Attributes
1. Dissolved Oxygen
2. Diel Variation
3. Fish Species Introductions
4. Misc. Toxins
5. Predation Risk
6. Temperature: Daily Minimum
7. Temperature: Daily Maximum
8. Total Suspended Solids
9. Flow Velocity
10. Salinity
11. Entrainment
12. Zooplankton
13. Water clarity

Habitat Quantity Attribute
1. Shallow Flats
2. Deep subtidal
3. Flooded wetlands
4. Intertidal mudflat
5. Shallow subtidal
6. Tidal brackish
7. Tidal freshwater
8. Wetted fringe
9. Width
10. Channel length

Survival Factors
1. Competition
2. Flow
3. Food
4. Habitat diversity
5. Obstructions
6. Oxygen
7. Pathogens
8. Predation
9. Sediment load
10. Temperature
11. Entrainment
12. Salinity
13. Key Habitat

Life stage-Habitat Rules
Construction of Food Rule

- Zooplankton
- Water Clarity
- Competition (clams)
- Nutrients
- Other

Food Index

Food Density

Productivity

Capacity

Graphs showing relationships between food density and other factors.
Species-Habitat Rule: Maximum Temperature

Nobriga, 2007

Daily Maximum Temperature (DSM2)

Bennett, 2005

Rule & Hypothesis for Life Stage
PRELIMINARY APPLICATION
Delta-EDT compares scenarios to diagnose conditions

Impairment of biological potential due to habitat change

- Capacity (habitat quantity)
- Productivity (habitat quality)
- Abundance (habitat potential)
- Life history diversity
Diagnostic splicing in Delta EDT

\[\Delta P_r = \frac{(P_{splice} - P_{current})}{P_{current}} \]

\[\Delta P_{r4} = \frac{418 - 327}{327} = 28\% \]

\[\Delta P_{r7} = \frac{523 - 327}{327} = 60\% \]

Conclusion: Relaxing constraints in Reach 7 had greater effect on population performance than did Reach 4

Splicing can address
- Productivity
- Capacity
- Neq
- Life History Diversity

Of
- Populations
- Reaches
- Attributes
- Life stages
20 Year Population Performance EBC1

Scenario Comparison

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Current</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Productivity</td>
<td>4.5</td>
<td>14.6</td>
</tr>
<tr>
<td>Capacity</td>
<td>285,330</td>
<td>16,676,808</td>
</tr>
<tr>
<td>NeQ</td>
<td>221,373</td>
<td>15,798,582</td>
</tr>
<tr>
<td>Life history diversity</td>
<td>4.9%</td>
<td>97%</td>
</tr>
</tbody>
</table>

Graph Description

- **Spawners** vs **Recruits**
- Line colors and markers indicate different scenarios and reference values:
 - Blue: Replacement
 - Purple dashed: Current Productivity
 - Orange: Current Recruits per Spawner
 - Black: Current Capacity
 - Light purple dashed: Reference Productivity
 - Black dashed: Reference Capacity
 - Orange: Reference Recruits per Spawner
 - Red: Current NeQ
 - Green: Reference NeQ

ICF International. Passion. Expertise. Results.

icfi.com
Limiting Factors Diagnosis

<table>
<thead>
<tr>
<th>LSSequenceName</th>
<th>Competition</th>
<th>Flow</th>
<th>Oxygen</th>
<th>Predation</th>
<th>Salinity</th>
<th>Sediment load</th>
<th>Temperature</th>
<th>Withdrawals</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-Spawners/Mature (1)</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>1-Eggs</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>3%</td>
<td>0%</td>
<td>2%</td>
</tr>
<tr>
<td>2-Larvae (yolk-sac)</td>
<td>0%</td>
<td>3%</td>
<td>0%</td>
<td>3%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>2%</td>
</tr>
<tr>
<td>3-Larvae (feeding)</td>
<td>0%</td>
<td>2%</td>
<td>0%</td>
<td>3%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>2%</td>
</tr>
<tr>
<td>4-Post-Larvae</td>
<td>0%</td>
<td>1%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>1%</td>
</tr>
<tr>
<td>5-Juveniles</td>
<td>7%</td>
<td>0%</td>
<td>0%</td>
<td>4%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>8%</td>
</tr>
<tr>
<td>6-First Year Rearing</td>
<td>4%</td>
<td>1%</td>
<td>0%</td>
<td>4%</td>
<td>1%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>7-First Year Migrant Prespawner</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>2%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>8-First Year Holding Prespawner</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>2%</td>
<td>2%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LSSequenceName</th>
<th>Average of Change in Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-Spawners/Mature (1)</td>
<td>0%</td>
</tr>
<tr>
<td>1-Eggs</td>
<td>21%</td>
</tr>
<tr>
<td>2-Larvae (yolk-sac)</td>
<td>30%</td>
</tr>
<tr>
<td>3-Larvae (feeding)</td>
<td>45%</td>
</tr>
<tr>
<td>4-Post-Larvae</td>
<td>14%</td>
</tr>
<tr>
<td>5-Juveniles</td>
<td>22%</td>
</tr>
<tr>
<td>6-First Year Rearing</td>
<td>11%</td>
</tr>
<tr>
<td>7-First Year Migrant Prespawner</td>
<td>4%</td>
</tr>
<tr>
<td>8-First Year Holding Prespawner</td>
<td>81%</td>
</tr>
</tbody>
</table>
Reach Loss of Neq

<table>
<thead>
<tr>
<th>Location</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suisun Bay-259</td>
<td>93%</td>
</tr>
<tr>
<td>Sacramento River-46</td>
<td>91%</td>
</tr>
<tr>
<td>Sacramento River-201</td>
<td>90%</td>
</tr>
<tr>
<td>Grizzly Bay-256</td>
<td>90%</td>
</tr>
<tr>
<td>Broad Slough-214</td>
<td>87%</td>
</tr>
<tr>
<td>Napa River-285</td>
<td>83%</td>
</tr>
<tr>
<td>Grizzly Bay-252</td>
<td>82%</td>
</tr>
<tr>
<td>Middle River-135</td>
<td>79%</td>
</tr>
<tr>
<td>San Joaquin River-55</td>
<td>78%</td>
</tr>
<tr>
<td>Sherman Lake-203</td>
<td>78%</td>
</tr>
<tr>
<td>Whiskey Slough-94</td>
<td>73%</td>
</tr>
<tr>
<td>Grizzly Bay-253</td>
<td>72%</td>
</tr>
<tr>
<td>San Joaquin River-59</td>
<td>72%</td>
</tr>
<tr>
<td>Grizzly Bay-257</td>
<td>71%</td>
</tr>
<tr>
<td>Burns Cutoff-97</td>
<td>70%</td>
</tr>
<tr>
<td>Old River-179</td>
<td>69%</td>
</tr>
<tr>
<td>Sacramento River-19</td>
<td>69%</td>
</tr>
<tr>
<td>San Joaquin River-92</td>
<td>69%</td>
</tr>
<tr>
<td>Grizzly Bay-235A</td>
<td>67%</td>
</tr>
<tr>
<td>Mayberry Slough-204</td>
<td>66%</td>
</tr>
<tr>
<td>Liberty Cut-1</td>
<td>65%</td>
</tr>
<tr>
<td>Victoria Canal-131</td>
<td>64%</td>
</tr>
<tr>
<td>False River-63</td>
<td>61%</td>
</tr>
<tr>
<td>San Joaquin River-207</td>
<td>59%</td>
</tr>
<tr>
<td>San Joaquin River-91</td>
<td>58%</td>
</tr>
<tr>
<td>Elk Slough-18</td>
<td>58%</td>
</tr>
<tr>
<td>Fourteenmile Slough-76</td>
<td>58%</td>
</tr>
<tr>
<td>Sevenmile Slough-54</td>
<td>57%</td>
</tr>
<tr>
<td>San Joaquin River-99</td>
<td>56%</td>
</tr>
<tr>
<td>Grizzly Bay-220</td>
<td>56%</td>
</tr>
<tr>
<td>Broad Slough-217</td>
<td>55%</td>
</tr>
<tr>
<td>Potato Slough-49</td>
<td>53%</td>
</tr>
<tr>
<td>North Mokelumne River-30</td>
<td>53%</td>
</tr>
<tr>
<td>Steamboat Slough-12</td>
<td>51%</td>
</tr>
<tr>
<td>Georgiana Slough-29</td>
<td>50%</td>
</tr>
</tbody>
</table>
Development of Delta-EDT

• Work to date ➔ working model with provisional parameterization
• Next steps
 – Peer review—This is where you come in!
 – Test the model by evaluating habitat conditions and alternatives
 – Refine and make available
• We invite you all to work with us to develop Delta-EDT as a useful tool for delta habitat restoration
 – Collaboration
 – Peer review
• Applications
 – Limiting factors analysis—what do we restore?
 – Identification of restoration priorities—where do we restore?
 – Habitat status & trends reporting—how are we doing over time?
 – Adaptive management—how does our working hypothesis change over time?
Acknowledgements

Westlands Water District
ICF Development Funds