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Appendix D

LOCAL CONSERVATION BALANCES

Though numerical models of unsteady, gradually-varied flow are theoretically based on the con-
tinuous Equations 2.4.1 and 2.4.2, the equations actually solved by numerical model code are
descretized transformations of these equations. Independent confirmation that the numerical pre-
dictions do indeed satisfy Equations 2.4.1 and 2.4.2 is a useful independent check on a numerical
code.

A numerical model provides predictions of η and Q at discrete positions and times, ηn
i = η(xi, tn)

and Qn
i = Q(xi, tn). The xi are the fixed locations of spatial nodes. They are frequently uniformly

spaced, but this is not necessary. The times tn also are generally uniformly spaced, though this is
again unnecessary.

To evaluate the contributing terms in the mass and momentum balances, local estimates of time
and space derivatives of the dependent variables are required. And these must be determined in a
manner that is independent of the numerical code but, at the same time, does not compromise the
numerical predictions. The truncation errors of common numerical codes typically do not exceed
second order in ∆x and ∆t. This is equivalent to local interpolation following a Taylor series
expansion, truncated after the second order terms. Such a truncated Taylor series expansion is a
bi-quadratic polynomial in x and t.

Accordingly, the local behavior of the dependent variables is assumed to follow a bi-quadratic
polynomial. For η(x, t), this is

η(x, t) = η00 + η01t + η10x + η02t
2 + η11xt + η20x

2 (D.0.1)

at each local node, which is at x = 0 and t = 0 in the local coordinate system. The six polynomial
coefficients, η00, η01, η10, η02, η11, η20, are determined from the nine known and neighboring nodal
predictions for η, specifically ηn
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i+1, in Equation D.0.1 defines five simultaneous linear
algebraic equations and a direct solution for the polynomial coefficients, η00, η01, η10, η02 and η20.

The cross coefficient η11 is determined by least squares from Equation D.0.1 at the four more
distant nodes, ηn−1
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i+1 . However, it does not subsequently appear in the

approximations to either of the conservation equations.
Q(x, t) is similarly defined with polynomial coefficients Q00 . . .Q02. Dependent channel geom-

etry parameters are similarly defined, b(x, t) with coefficients b00 . . . b02, A(x, t) with coefficients
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A00 . . .A02, and P (x, t) with coefficients P00 . . .P02.
With η, Q, b, A and P analytically defined in the neighborhood of the node, the terms in

Equations 2.4.1 and 2.4.2 are evaluated by direct substitution. At the node, x = 0 and t = 0, the
Mass Equation 2.4.1 becomes

b00η01 + Q10 = 0 (D.0.2)

which is Storage + Advection = 0. The sum, Σ = Storage + Advection, should be zero throughout.
Similarly, the Momentum Equation 2.4.2 becomes
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which are Temporal Inertia + Advective Inertia = Gravity + Friction. The Friction term is

Friction =
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The sum, Σ = Temporal Inertia + Advective Inertia - Gravity - Friction, should be zero throughout.


